BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18948044)

  • 1. Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation.
    Liu J; Yu H; Shen Z
    J Mol Graph Model; 2008 Nov; 27(4):529-35. PubMed ID: 18948044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions.
    Chen J; Yu H; Liu C; Liu J; Shen Z
    J Biotechnol; 2012 Dec; 164(2):354-62. PubMed ID: 23384947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic arrangement of ion pairs and individual contributions to the thermal stability of the cofactor-binding domain of glutamate dehydrogenase from Thermotoga maritima.
    Danciulescu C; Ladenstein R; Nilsson L
    Biochemistry; 2007 Jul; 46(29):8537-49. PubMed ID: 17602502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics studies on the thermostability of family 11 xylanases.
    Purmonen M; Valjakka J; Takkinen K; Laitinen T; Rouvinen J
    Protein Eng Des Sel; 2007 Nov; 20(11):551-9. PubMed ID: 17977846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability.
    de Bakker PI; Hünenberger PH; McCammon JA
    J Mol Biol; 1999 Jan; 285(4):1811-30. PubMed ID: 9917414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Stability Enhancement of Nitrile Hydratase from Bordetella petrii by Swapping the C-terminal Domain of β subunit.
    Sun W; Zhu L; Chen X; Wu L; Zhou Z; Liu Y
    Appl Biochem Biotechnol; 2016 Apr; 178(8):1481-7. PubMed ID: 26686500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the relationship between cyclodextrin glycosyltransferase's thermostability and salt bridge by molecular dynamics simulation.
    Fu Y; Ding Y; Chen Z; Sun J; Fang W; Xu W
    Protein Pept Lett; 2010 Nov; 17(11):1403-11. PubMed ID: 20594159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and energetic determinants of thermal stability and hierarchical unfolding pathways of hyperthermophilic proteins, Sac7d and Sso7d.
    Priyakumar UD; Ramakrishna S; Nagarjuna KR; Reddy SK
    J Phys Chem B; 2010 Feb; 114(4):1707-18. PubMed ID: 20055363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins.
    Elcock AH
    J Mol Biol; 1998 Nov; 284(2):489-502. PubMed ID: 9813132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling catalytic mechanism of nitrile hydratase by semi-empirical quantum mechanical calculation.
    Yu H; Liu J; Shen Z
    J Mol Graph Model; 2008 Nov; 27(4):522-8. PubMed ID: 18945629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Helicobacter pylori: Molecular cloning, enzymatic characterization, and structural modeling.
    Liu W; Luo C; Han C; Peng S; Yang Y; Yue J; Shen X; Jiang H
    Biochem Biophys Res Commun; 2005 Aug; 333(4):1078-86. PubMed ID: 15967411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.
    Papaleo E; Olufsen M; De Gioia L; Brandsdal BO
    J Mol Graph Model; 2007 Jul; 26(1):93-103. PubMed ID: 17084098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation reveals a surface salt bridge forming a kinetic trap in unfolding of truncated Staphylococcal nuclease.
    Gruia AD; Fischer S; Smith JC
    Proteins; 2003 Feb; 50(3):507-15. PubMed ID: 12557192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesophile versus thermophile: insights into the structural mechanisms of kinetic stability.
    Kelch BA; Agard DA
    J Mol Biol; 2007 Jul; 370(4):784-95. PubMed ID: 17543987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanistic exploration of acid resistance: kinetic stability facilitates evolution of extremophilic behavior.
    Kelch BA; Eagen KP; Erciyas FP; Humphris EL; Thomason AR; Mitsuiki S; Agard DA
    J Mol Biol; 2007 May; 368(3):870-83. PubMed ID: 17382344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-translational modification of Rhodococcus R312 and Comamonas NI1 nitrile hydratases.
    Stevens JM; Belghazi M; Jaouen M; Bonnet D; Schmitter JM; Mansuy D; Sari MA; Artaud I
    J Mass Spectrom; 2003 Sep; 38(9):955-61. PubMed ID: 14505323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.
    Lee CW; Wang HJ; Hwang JK; Tseng CP
    PLoS One; 2014; 9(11):e112751. PubMed ID: 25393107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for the participation of an extra α-helix at β-subunit surface in the thermal stability of Co-type nitrile hydratase.
    Pei X; Wang J; Wu Y; Zhen X; Tang M; Wang Q; Wang A
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7891-7900. PubMed ID: 29998413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential amino acids for the stability of human butyrylcholinesterase as predicted by CUPSAT server.
    Thomas B; Boopathy R
    In Silico Biol; 2008; 8(5-6):517-29. PubMed ID: 19374135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.