These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18948229)

  • 61. Studies of the respiratory center using isolated brainstem-spinal cord preparations.
    Onimaru H
    Neurosci Res; 1995 Jan; 21(3):183-90. PubMed ID: 7753499
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Suprapontine Structures Modulate Brainstem and Spinal Networks.
    Mohammadshirazi A; Apicella R; Zylberberg BA; Mazzone GL; Taccola G
    Cell Mol Neurobiol; 2023 Aug; 43(6):2831-2856. PubMed ID: 36732488
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Permanent release of noradrenaline modulates respiratory frequency in the newborn rat: an in vitro study.
    Errchidi S; Hilaire G; Monteau R
    J Physiol; 1990 Oct; 429():497-510. PubMed ID: 2277355
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Laudanosine has no effects on respiratory activity but induces non-respiratory excitement activity in isolated brainstem-spinal cord preparation of neonatal rats.
    Sakuraba S; Hosokawa Y; Kaku Y; Takeda J; Kuwana S
    Adv Exp Med Biol; 2010; 669():177-80. PubMed ID: 20217344
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Noradrenergic receptors and in vitro respiratory rhythm: possible interspecies differences between mouse and rat neonates.
    Jean-Charles V; GĂ©rard H
    Neurosci Lett; 2002 May; 324(2):149-53. PubMed ID: 11988349
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ampakines enhance weak endogenous respiratory drive and alleviate apnea in perinatal rats.
    Ren J; Ding X; Greer JJ
    Am J Respir Crit Care Med; 2015 Mar; 191(6):704-10. PubMed ID: 25594679
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats.
    Vasilakos K; Wilson RJ; Kimura N; Remmers JE
    J Neurobiol; 2005 Feb; 62(3):369-85. PubMed ID: 15551345
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Embryonic emergence of the respiratory rhythm generator.
    Fortin G; Thoby-Brisson M
    Respir Physiol Neurobiol; 2009 Aug; 168(1-2):86-91. PubMed ID: 19560563
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Substance P and central respiratory activity: a comparative in vitro study on foetal and newborn rat.
    Ptak K; Di Pasquale E; Monteau R
    Brain Res Dev Brain Res; 1999 May; 114(2):217-27. PubMed ID: 10320761
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Development of spontaneous mouth/tongue movement and related neural activity, and their repression in fetal mice lacking glutamate decarboxylase 67.
    Tsunekawa N; Arata A; Obata K
    Eur J Neurosci; 2005 Jan; 21(1):173-8. PubMed ID: 15654854
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Differential involvement of projection neurons during emergence of spontaneous activity in the developing avian hindbrain.
    Mochida H; Fortin G; Champagnat J; Glover JC
    J Neurophysiol; 2009 Feb; 101(2):591-602. PubMed ID: 19036869
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A pharmacological study on respiratory rhythm in the isolated brainstem-spinal cord preparation of the newborn rat.
    Murakoshi T; Suzue T; Tamai S
    Br J Pharmacol; 1985 Sep; 86(1):95-104. PubMed ID: 2413943
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electrical activation and inhibition of respiration in vitro.
    Hamada O; Garcia-Rill E; Skinner RD
    Neurosci Res; 1994 Mar; 19(2):131-42. PubMed ID: 8008241
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Application of patch-clamp techniques for isolated newborn rat brain stem-spinal cord preparations].
    Onimaru H
    Nihon Seirigaku Zasshi; 1994; 56(11):369-80. PubMed ID: 7884681
    [No Abstract]   [Full Text] [Related]  

  • 75. Transient expression of Bis protein in midline radial glia in developing rat brainstem and spinal cord.
    Choi JS; Lee JH; Shin YJ; Lee JY; Yun H; Chun MH; Lee MY
    Cell Tissue Res; 2009 Jul; 337(1):27-36. PubMed ID: 19415333
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Postnatal reorganization of F-actin in the central canal of the spinal cord in the rat.
    Li YC; Bai WZ; Hashikawa T
    Brain Res; 2008 Nov; 1239():100-6. PubMed ID: 18778690
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Isolated in vitro brainstem-spinal cord preparations remain important tools in respiratory neurobiology.
    Johnson SM; Turner SM; Huxtable AG; Ben-Mabrouk F
    Respir Physiol Neurobiol; 2012 Jan; 180(1):1-7. PubMed ID: 22015642
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Barbiturate alteration of respiratory rhythm and drive in isolated brainstem-spinal cord of newborn rat: studies at normal and hyperbaric pressure.
    Tarasiuk A; Grossman Y; Kendig JJ
    Br J Anaesth; 1991 Jan; 66(1):88-96. PubMed ID: 1997065
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sulfide-induced perturbations of the neuronal mechanisms controlling breathing in rats.
    Greer JJ; Reiffenstein RJ; Almeida AF; Carter JE
    J Appl Physiol (1985); 1995 Feb; 78(2):433-40. PubMed ID: 7759410
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A novel statistical analysis of voltage-imaging data by structural time series modeling and its application to the respiratory neuronal network.
    Kawai S; Oku Y; Okada Y; Miwakeichi F; Tamura Y; Ishiguro M
    Neurosci Res; 2009 Mar; 63(3):165-71. PubMed ID: 19110013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.