BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18948281)

  • 1. Genome bias influences amino acid choices: analysis of amino acid substitution and re-compilation of substitution matrices exclusive to an AT-biased genome.
    Paila U; Kondam R; Ranjan A
    Nucleic Acids Res; 2008 Dec; 36(21):6664-75. PubMed ID: 18948281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The compositional adjustment of amino acid substitution matrices.
    Yu YK; Wootton JC; Altschul SF
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15688-93. PubMed ID: 14663142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genomic perspective of protein kinases in Plasmodium falciparum.
    Anamika ; Srinivasan N; Krupa A
    Proteins; 2005 Jan; 58(1):180-9. PubMed ID: 15515182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of mobile genetic elements in three Plasmodium species and their potential impact on the nucleotide composition of the P. falciparum genome.
    Durand PM; Oelofse AJ; Coetzer TL
    BMC Genomics; 2006 Nov; 7():282. PubMed ID: 17083741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene function prediction using semantic similarity clustering and enrichment analysis in the malaria parasite Plasmodium falciparum.
    Tedder PM; Bradford JR; Needham CJ; McConkey GA; Bulpitt AJ; Westhead DR
    Bioinformatics; 2010 Oct; 26(19):2431-7. PubMed ID: 20693320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consequences of stop codon reassignment on protein evolution in ciliates with alternative genetic codes.
    Ring KL; Cavalcanti AR
    Mol Biol Evol; 2008 Jan; 25(1):179-86. PubMed ID: 17974549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel series of compositionally biased substitution matrices for comparing Plasmodium proteins.
    Brick K; Pizzi E
    BMC Bioinformatics; 2008 May; 9():236. PubMed ID: 18485187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The construction of amino acid substitution matrices for the comparison of proteins with non-standard compositions.
    Yu YK; Altschul SF
    Bioinformatics; 2005 Apr; 21(7):902-11. PubMed ID: 15509610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence of Plasmodium falciparum chromosome 12.
    Hyman RW; Fung E; Conway A; Kurdi O; Mao J; Miranda M; Nakao B; Rowley D; Tamaki T; Wang F; Davis RW
    Nature; 2002 Oct; 419(6906):534-7. PubMed ID: 12368869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eigenvalue analysis of amino acid substitution matrices reveals a sharp transition of the mode of sequence conservation in proteins.
    Kinjo AR; Nishikawa K
    Bioinformatics; 2004 Nov; 20(16):2504-8. PubMed ID: 15130930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of non-symmetric substitution matrices derived from proteomes with biased amino acid distributions.
    Bastien O; Roy S; Maréchal E
    C R Biol; 2005 May; 328(5):445-53. PubMed ID: 15948633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abundance of intrinsically unstructured proteins in P. falciparum and other apicomplexan parasite proteomes.
    Feng ZP; Zhang X; Han P; Arora N; Anders RF; Norton RS
    Mol Biochem Parasitol; 2006 Dec; 150(2):256-67. PubMed ID: 17010454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome composition in Plasmodium falciparum: higher usage of GC-rich nonsynonymous codons in highly expressed genes.
    Chanda I; Pan A; Dutta C
    J Mol Evol; 2005 Oct; 61(4):513-23. PubMed ID: 16044241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes.
    Mohan A; Sullivan WJ; Radivojac P; Dunker AK; Uversky VN
    Mol Biosyst; 2008 Apr; 4(4):328-40. PubMed ID: 18354786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of amino acid substitution matrices.
    Henikoff S; Henikoff JG
    Proteins; 1993 Sep; 17(1):49-61. PubMed ID: 8234244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEST sequences in the malaria parasite Plasmodium falciparum: a genomic study.
    Mitchell D; Bell A
    Malar J; 2003 Jun; 2():16. PubMed ID: 12857354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data mining parasite genomes.
    Berriman M
    Parasitology; 2004; 128 Suppl 1():S23-31. PubMed ID: 16454895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using increment of diversity to predict mitochondrial proteins of malaria parasite: integrating pseudo-amino acid composition and structural alphabet.
    Chen YL; Li QZ; Zhang LQ
    Amino Acids; 2012 Apr; 42(4):1309-16. PubMed ID: 21191803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the compositional biases in Plasmodium falciparum genome and proteome using Arabidopsis thaliana as a reference.
    Bastien O; Lespinats S; Roy S; Métayer K; Fertil B; Codani JJ; Maréchal E
    Gene; 2004 Jul; 336(2):163-73. PubMed ID: 15246528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bologna annotation resource: a non hierarchical method for the functional and structural annotation of protein sequences relying on a comparative large-scale genome analysis.
    Bartoli L; Montanucci L; Fronza R; Martelli PL; Fariselli P; Carota L; Donvito G; Maggi GP; Casadio R
    J Proteome Res; 2009 Sep; 8(9):4362-71. PubMed ID: 19552451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.