These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 18948705)

  • 21. Genetic transformation of major cereal crops.
    Ji Q; Xu X; Wang K
    Int J Dev Biol; 2013; 57(6-8):495-508. PubMed ID: 24166432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grass Hosts Harbor More Diverse Isolates of Puccinia striiformis Than Cereal Crops.
    Cheng P; Chen XM; See DR
    Phytopathology; 2016 Apr; 106(4):362-71. PubMed ID: 26667189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Are cereal grasses a single genetic system?
    Mascher M; Marone MP; Schreiber M; Stein N
    Nat Plants; 2024 May; 10(5):719-731. PubMed ID: 38605239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Harnessing clonal gametes in hybrid crops to engineer polyploid genomes.
    Wang Y; Fuentes RR; van Rengs WMJ; Effgen S; Zaidan MWAM; Franzen R; Susanto T; Fernandes JB; Mercier R; Underwood CJ
    Nat Genet; 2024 Jun; 56(6):1075-1079. PubMed ID: 38741016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reverse breeding: a novel breeding approach based on engineered meiosis.
    Dirks R; van Dun K; de Snoo CB; van den Berg M; Lelivelt CL; Voermans W; Woudenberg L; de Wit JP; Reinink K; Schut JW; van der Zeeuw E; Vogelaar A; Freymark G; Gutteling EW; Keppel MN; van Drongelen P; Kieny M; Ellul P; Touraev A; Ma H; de Jong H; Wijnker E
    Plant Biotechnol J; 2009 Dec; 7(9):837-45. PubMed ID: 19811618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The complex origins of domesticated crops in the Fertile Crescent.
    Brown TA; Jones MK; Powell W; Allaby RG
    Trends Ecol Evol; 2009 Feb; 24(2):103-9. PubMed ID: 19100651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.
    Yabe S; Yamasaki M; Ebana K; Hayashi T; Iwata H
    PLoS One; 2016; 11(4):e0153945. PubMed ID: 27115872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability.
    Cai D; Chen J; Chen D; Dai B; Zhang W; Song Z; Yang Z; Du C; Tang Z; He Y; Zhang D; He G; Zhu Y
    Sci China C Life Sci; 2007 Jun; 50(3):356-66. PubMed ID: 17609893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cereal breeding takes a walk on the wild side.
    Feuillet C; Langridge P; Waugh R
    Trends Genet; 2008 Jan; 24(1):24-32. PubMed ID: 18054117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mechanisms and regulation of recombination frequency and distribution in plants.
    Zou M; Shabala S; Zhao C; Zhou M
    Theor Appl Genet; 2024 Mar; 137(4):86. PubMed ID: 38512498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding and Manipulating Meiotic Recombination in Plants.
    Lambing C; Franklin FC; Wang CR
    Plant Physiol; 2017 Mar; 173(3):1530-1542. PubMed ID: 28108697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species.
    Varshney RK; Thiel T; Stein N; Langridge P; Graner A
    Cell Mol Biol Lett; 2002; 7(2A):537-46. PubMed ID: 12378259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Haploids: Constraints and opportunities in plant breeding.
    Dwivedi SL; Britt AB; Tripathi L; Sharma S; Upadhyaya HD; Ortiz R
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):812-29. PubMed ID: 26165969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole genome approaches to identify early meiotic gene candidates in cereals.
    Bovill WD; Deveshwar P; Kapoor S; Able JA
    Funct Integr Genomics; 2009 May; 9(2):219-29. PubMed ID: 18836753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The molecular genetic mapping of cereal crops].
    Kartel' NA; Malyshev SV
    Tsitol Genet; 2000; 34(2):5-10. PubMed ID: 10857196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content.
    Foote TN; Griffiths S; Allouis S; Moore G
    Funct Integr Genomics; 2004 Mar; 4(1):26-33. PubMed ID: 14727148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative view of the evolution of grasses under domestication.
    Glémin S; Bataillon T
    New Phytol; 2009; 183(2):273-290. PubMed ID: 19515223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Meiosis, unreduced gametes, and parthenogenesis: implications for engineering clonal seed formation in crops.
    Ronceret A; Vielle-Calzada JP
    Plant Reprod; 2015 Jun; 28(2):91-102. PubMed ID: 25796397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Triticeae genomics: advances in sequence analysis of large genome cereal crops.
    Stein N
    Chromosome Res; 2007; 15(1):21-31. PubMed ID: 17295124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative genomics of grass EST libraries reveals previously uncharacterized splicing events in crop plants.
    Chuang TJ; Yang MY; Lin CC; Hsieh PH; Hung LY
    BMC Plant Biol; 2015 Feb; 15():39. PubMed ID: 25652661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.