These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18948753)

  • 21. Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9.
    Ngo HP; Lydall D
    PLoS Genet; 2010 Aug; 6(8):e1001072. PubMed ID: 20808892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping.
    Dewar JM; Lydall D
    EMBO J; 2010 Dec; 29(23):4020-34. PubMed ID: 21045806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint.
    Garvik B; Carson M; Hartwell L
    Mol Cell Biol; 1995 Nov; 15(11):6128-38. PubMed ID: 7565765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cdc13 OB2 dimerization required for productive Stn1 binding and efficient telomere maintenance.
    Mason M; Wanat JJ; Harper S; Schultz DC; Speicher DW; Johnson FB; Skordalakes E
    Structure; 2013 Jan; 21(1):109-120. PubMed ID: 23177925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rif1 supports the function of the CST complex in yeast telomere capping.
    Anbalagan S; Bonetti D; Lucchini G; Longhese MP
    PLoS Genet; 2011 Mar; 7(3):e1002024. PubMed ID: 21437267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The checkpoint protein Rad24 of Saccharomyces cerevisiae is involved in processing double-strand break ends and in recombination partner choice.
    Aylon Y; Kupiec M
    Mol Cell Biol; 2003 Sep; 23(18):6585-96. PubMed ID: 12944484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function.
    Glustrom LW; Lyon KR; Paschini M; Reyes CM; Parsonnet NV; Toro TB; Lundblad V; Wuttke DS
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10315-10320. PubMed ID: 30249661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. G2/M checkpoint genes of Saccharomyces cerevisiae: further evidence for roles in DNA replication and/or repair.
    Lydall D; Weinert T
    Mol Gen Genet; 1997 Nov; 256(6):638-51. PubMed ID: 9435789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RPA provides checkpoint-independent cell cycle arrest and prevents recombination at uncapped telomeres of Saccharomyces cerevisiae.
    Grandin N; Charbonneau M
    DNA Repair (Amst); 2013 Mar; 12(3):212-26. PubMed ID: 23312805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13.
    Grandin N; Damon C; Charbonneau M
    EMBO J; 2001 Mar; 20(5):1173-83. PubMed ID: 11230140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition.
    Epum EA; Mohan MJ; Ruppe NP; Friedman KL
    PLoS Genet; 2020 Feb; 16(2):e1008608. PubMed ID: 32012161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping.
    Langston RE; Palazzola D; Bonnell E; Wellinger RJ; Weinert T
    PLoS Genet; 2020 Apr; 16(4):e1008733. PubMed ID: 32287268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A naturally thermolabile activity compromises genetic analysis of telomere function in Saccharomyces cerevisiae.
    Paschini M; Toro TB; Lubin JW; Braunstein-Ballew B; Morris DK; Lundblad V
    Genetics; 2012 May; 191(1):79-93. PubMed ID: 22377634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SUMOylation regulates telomere length homeostasis by targeting Cdc13.
    Hang LE; Liu X; Cheung I; Yang Y; Zhao X
    Nat Struct Mol Biol; 2011 Jul; 18(8):920-6. PubMed ID: 21743457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator.
    Downey M; Houlsworth R; Maringele L; Rollie A; Brehme M; Galicia S; Guillard S; Partington M; Zubko MK; Krogan NJ; Emili A; Greenblatt JF; Harrington L; Lydall D; Durocher D
    Cell; 2006 Mar; 124(6):1155-68. PubMed ID: 16564010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidation of the DNA end-replication problem in Saccharomyces cerevisiae.
    Soudet J; Jolivet P; Teixeira MT
    Mol Cell; 2014 Mar; 53(6):954-64. PubMed ID: 24656131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mrc1, a non-essential DNA replication protein, is required for telomere end protection following loss of capping by Cdc13, Yku or telomerase.
    Grandin N; Charbonneau M
    Mol Genet Genomics; 2007 Jun; 277(6):685-99. PubMed ID: 17323081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Telomere Binding Protein Cdc13 and the Single-Stranded DNA Binding Protein RPA Protect Telomeric DNA from Resection by Exonucleases.
    Greetham M; Skordalakes E; Lydall D; Connolly BA
    J Mol Biol; 2015 Sep; 427(19):3023-30. PubMed ID: 26264873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exposure of single-stranded telomeric DNA causes G2/M cell cycle arrest in Saccharomyces cerevisiae.
    Pang TL; Wang CY; Hsu CL; Chen MY; Lin JJ
    J Biol Chem; 2003 Mar; 278(11):9318-21. PubMed ID: 12519786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres.
    Strecker J; Stinus S; Caballero MP; Szilard RK; Chang M; Durocher D
    Elife; 2017 Aug; 6():. PubMed ID: 28826474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.