These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18948753)

  • 41. Systematic Analysis of the DNA Damage Response Network in Telomere Defective Budding Yeast.
    Holstein EM; Ngo G; Lawless C; Banks P; Greetham M; Wilkinson D; Lydall D
    G3 (Bethesda); 2017 Jul; 7(7):2375-2389. PubMed ID: 28546384
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Telomerase recruitment in Saccharomyces cerevisiae is not dependent on Tel1-mediated phosphorylation of Cdc13.
    Gao H; Toro TB; Paschini M; Braunstein-Ballew B; Cervantes RB; Lundblad V
    Genetics; 2010 Dec; 186(4):1147-59. PubMed ID: 20837994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nuclear import of Cdc13 limits chromosomal capping.
    Mersaoui SY; Bonnell E; Wellinger RJ
    Nucleic Acids Res; 2018 Apr; 46(6):2975-2989. PubMed ID: 29432594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13.
    Anderson EM; Halsey WA; Wuttke DS
    Nucleic Acids Res; 2002 Oct; 30(19):4305-13. PubMed ID: 12364610
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres.
    Faure V; Coulon S; Hardy J; Géli V
    Mol Cell; 2010 Jun; 38(6):842-52. PubMed ID: 20620955
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New function of CDC13 in positive telomere length regulation.
    Meier B; Driller L; Jaklin S; Feldmann HM
    Mol Cell Biol; 2001 Jul; 21(13):4233-45. PubMed ID: 11390652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Hsp82 molecular chaperone promotes a switch between unextendable and extendable telomere states.
    DeZwaan DC; Toogun OA; Echtenkamp FJ; Freeman BC
    Nat Struct Mol Biol; 2009 Jul; 16(7):711-6. PubMed ID: 19525972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro.
    Wu Y; Zakian VA
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20362-9. PubMed ID: 21969561
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects.
    Addinall SG; Holstein EM; Lawless C; Yu M; Chapman K; Banks AP; Ngo HP; Maringele L; Taschuk M; Young A; Ciesiolka A; Lister AL; Wipat A; Wilkinson DJ; Lydall D
    PLoS Genet; 2011 Apr; 7(4):e1001362. PubMed ID: 21490951
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The structure of the checkpoint clamp 9-1-1 complex and clamp loader Rad24-RFC in Saccharomyces cerevisiae.
    Liu W
    Biochem Biophys Res Commun; 2019 Aug; 515(4):688-692. PubMed ID: 31182279
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chromosome end protection plasticity revealed by Stn1p and Ten1p bypass of Cdc13p.
    Petreaca RC; Chiu HC; Eckelhoefer HA; Chuang C; Xu L; Nugent CI
    Nat Cell Biol; 2006 Jul; 8(7):748-55. PubMed ID: 16767082
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA.
    Grandin N; Charbonneau M
    Nucleic Acids Res; 2007; 35(3):822-38. PubMed ID: 17202155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13.
    Tseng SF; Shen ZJ; Tsai HJ; Lin YH; Teng SC
    Nucleic Acids Res; 2009 Jun; 37(11):3602-11. PubMed ID: 19359360
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of telomere metabolism by the RNA processing protein Xrn1.
    Cesena D; Cassani C; Rizzo E; Lisby M; Bonetti D; Longhese MP
    Nucleic Acids Res; 2017 Apr; 45(7):3860-3874. PubMed ID: 28160602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae.
    Naiki T; Shimomura T; Kondo T; Matsumoto K; Sugimoto K
    Mol Cell Biol; 2000 Aug; 20(16):5888-96. PubMed ID: 10913172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of the determinants for the specific recognition of single-strand telomeric DNA by Cdc13.
    Eldridge AM; Halsey WA; Wuttke DS
    Biochemistry; 2006 Jan; 45(3):871-9. PubMed ID: 16411763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of Saccharomyces Cdc13p with Pol1p, Imp4p, Sir4p and Zds2p is involved in telomere replication, telomere maintenance and cell growth control.
    Hsu CL; Chen YS; Tsai SY; Tu PJ; Wang MJ; Lin JJ
    Nucleic Acids Res; 2004; 32(2):511-21. PubMed ID: 14742666
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication.
    Gopalakrishnan V; Tan CR; Li S
    Cell Cycle; 2017 Jul; 16(13):1271-1287. PubMed ID: 28650257
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mgs1 and Rad18/Rad5/Mms2 are required for survival of Saccharomyces cerevisiae mutants with novel temperature/cold sensitive alleles of the DNA polymerase delta subunit, Pol31.
    Vijeh Motlagh ND; Seki M; Branzei D; Enomoto T
    DNA Repair (Amst); 2006 Dec; 5(12):1459-74. PubMed ID: 16949354
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Telomere maintenance is dependent on activities required for end repair of double-strand breaks.
    Nugent CI; Bosco G; Ross LO; Evans SK; Salinger AP; Moore JK; Haber JE; Lundblad V
    Curr Biol; 1998 May; 8(11):657-60. PubMed ID: 9635193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.