These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 18949023)

  • 21. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscle effort is best minimized by the right-dominant arm in the gravity field.
    Poirier G; Papaxanthis C; Mourey F; Lebigre M; Gaveau J
    J Neurophysiol; 2022 Apr; 127(4):1117-1126. PubMed ID: 35353617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of non-extensor muscles of the leg to maximal-effort countermovement jumping.
    Nagano A; Komura T; Yoshioka S; Fukashiro S
    Biomed Eng Online; 2005 Sep; 4():52. PubMed ID: 16143047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a method for measuring movement-related effort: biomechanical considerations and implications for Fitts' law.
    Rosenbaum DA; Gregory RW
    Exp Brain Res; 2002 Feb; 142(3):365-73. PubMed ID: 11819045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements.
    Li Z; Milutinovic D; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1020-30. PubMed ID: 25532187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Balance control during an arm raising movement in bipedal stance: which biomechanical factor is controlled?
    Ferry M; Martin L; Termoz N; Côté J; Prince F
    Biol Cybern; 2004 Aug; 91(2):104-14. PubMed ID: 15338215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A biologically inspired neural network controller for ballistic arm movements.
    Bernabucci I; Conforto S; Capozza M; Accornero N; Schmid M; D'Alessio T
    J Neuroeng Rehabil; 2007 Sep; 4():33. PubMed ID: 17767712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of vision in the control of continuous multijoint movements.
    Ketcham CJ; Dounskaia NV; Stelmach GE
    J Mot Behav; 2006 Jan; 38(1):29-44. PubMed ID: 16436361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J; Taniai Y
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postural adjustments for online corrections of arm movements in standing humans.
    Leonard JA; Gritsenko V; Ouckama R; Stapley PJ
    J Neurophysiol; 2011 May; 105(5):2375-88. PubMed ID: 21346210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do arm postures vary with the speed of reaching?
    Nishikawa KC; Murray ST; Flanders M
    J Neurophysiol; 1999 May; 81(5):2582-6. PubMed ID: 10322091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visual gravity influences arm movement planning.
    Sciutti A; Demougeot L; Berret B; Toma S; Sandini G; Papaxanthis C; Pozzo T
    J Neurophysiol; 2012 Jun; 107(12):3433-45. PubMed ID: 22442569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Posture-movement changes following repetitive motion-induced shoulder muscle fatigue.
    Fuller JR; Lomond KV; Fung J; Côté JN
    J Electromyogr Kinesiol; 2009 Dec; 19(6):1043-52. PubMed ID: 19091598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Difference in the metabolic cost of postural actions during iso- and antidirectional coupled oscillations of the upper limbs in the horizontal plane.
    Esposti R; Esposito F; Cé E; Baldissera F
    Eur J Appl Physiol; 2010 Jan; 108(1):93-104. PubMed ID: 19756702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toy-oriented changes during early arm movements IV: shoulder-elbow coordination.
    Lee HM; Bhat A; Scholz JP; Galloway JC
    Infant Behav Dev; 2008 Sep; 31(3):447-69. PubMed ID: 18316128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A model for learning human reaching movements.
    Karniel A; Inbar GF
    Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the nature of motor planning variables during arm pointing movement: Compositeness and speed dependence.
    Vu VH; Isableu B; Berret B
    Neuroscience; 2016 Jul; 328():127-46. PubMed ID: 27132233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of biophysical muscle properties on simulating fast human arm movements.
    Bayer A; Schmitt S; Günther M; Haeufle DFB
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electromyographic and biomechanical characteristics of segmental postural adjustments associated with voluntary wrist movements. Influence of an elbow support.
    Chabran E; Maton B; Ribreau C; Fourment A
    Exp Brain Res; 2001 Nov; 141(2):133-45. PubMed ID: 11713625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.