These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 18949023)

  • 61. Multijoint dynamics and postural stability of the human arm.
    Perreault EJ; Kirsch RF; Crago PE
    Exp Brain Res; 2004 Aug; 157(4):507-17. PubMed ID: 15112115
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparing smooth arm movements with the two-thirds power law and the related segmented-control hypothesis.
    Richardson MJ; Flash T
    J Neurosci; 2002 Sep; 22(18):8201-11. PubMed ID: 12223574
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Direction-dependent arm kinematics reveal optimal integration of gravity cues.
    Gaveau J; Berret B; Angelaki DE; Papaxanthis C
    Elife; 2016 Nov; 5():. PubMed ID: 27805566
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optimal control of antagonistic muscle stiffness during voluntary movements.
    Lan N; Crago PE
    Biol Cybern; 1994; 71(2):123-35. PubMed ID: 8068774
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Asymmetric velocity and acceleration profiles of human arm movements.
    Nagasaki H
    Exp Brain Res; 1989; 74(2):319-26. PubMed ID: 2924852
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The coordination of arm movements: an experimentally confirmed mathematical model.
    Flash T; Hogan N
    J Neurosci; 1985 Jul; 5(7):1688-703. PubMed ID: 4020415
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optimality principles in sensorimotor control.
    Todorov E
    Nat Neurosci; 2004 Sep; 7(9):907-15. PubMed ID: 15332089
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models.
    Katayama M; Kawato M
    Biol Cybern; 1993; 69(5-6):353-62. PubMed ID: 8274536
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements.
    Schaal S; Sternad D
    Exp Brain Res; 2001 Jan; 136(1):60-72. PubMed ID: 11204414
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The energetic basis for smooth human arm movements.
    Wong JD; Cluff T; Kuo AD
    Elife; 2021 Dec; 10():. PubMed ID: 34927584
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modeling kinematics and dynamics of human arm movements.
    Admiraal MA; Kusters MJ; Gielen SC
    Motor Control; 2004 Jul; 8(3):312-38. PubMed ID: 15322310
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predictions of antagonistic muscular activity using nonlinear optimization.
    Herzog W; Binding P
    Math Biosci; 1992 Oct; 111(2):217-29. PubMed ID: 1515744
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Experimental and theoretical study of velocity fluctuations during slow movements in humans.
    Guigon E; Chafik O; Jarrassé N; Roby-Brami A
    J Neurophysiol; 2019 Feb; 121(2):715-727. PubMed ID: 30649981
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Detecting the relevance to performance of whole-body movements.
    Furuki D; Takiyama K
    Sci Rep; 2017 Nov; 7(1):15659. PubMed ID: 29142276
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Postural control of arm and fingers through integration of movement commands.
    Albert ST; Hadjiosif AM; Jang J; Zimnik AJ; Soteropoulos DS; Baker SN; Churchland MM; Krakauer JW; Shadmehr R
    Elife; 2020 Feb; 9():. PubMed ID: 32043973
    [TBL] [Abstract][Full Text] [Related]  

  • 76. What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control.
    Morel P; Ulbrich P; Gail A
    PLoS Biol; 2017 Jun; 15(6):e2001323. PubMed ID: 28586347
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optimization and evaluation of a proportional derivative controller for planar arm movement.
    Jagodnik KM; van den Bogert AJ
    J Biomech; 2010 Apr; 43(6):1086-91. PubMed ID: 20097345
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Planning reaching and grasping movements: theoretical premises and practical implications.
    Rosenbaum DA; Meulenbroek RG; Vaughan J
    Motor Control; 2001 Apr; 5(2):99-115. PubMed ID: 11303108
    [TBL] [Abstract][Full Text] [Related]  

  • 79. On the cost functions for the control of the human arm movement.
    Cruse H; Wischmeyer E; Brüwer M; Brockfeld P; Dress A
    Biol Cybern; 1990; 62(6):519-28. PubMed ID: 2357475
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A mathematical tool to generate complex whole body motor tasks and test hypotheses on underlying motor planning.
    Tagliabue M; Pedrocchi A; Pozzo T; Ferrigno G
    Med Biol Eng Comput; 2008 Jan; 46(1):11-22. PubMed ID: 17846806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.