These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 18949023)

  • 81. Uncontrolled manifold analysis of arm joint angle variability during robotic teleoperation and freehand movement of surgeons and novices.
    Nisky I; Hsieh MH; Okamura AM
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2869-81. PubMed ID: 24967980
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Affine differential geometry analysis of human arm movements.
    Flash T; Handzel AA
    Biol Cybern; 2007 Jun; 96(6):577-601. PubMed ID: 17406889
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Optimizing rapid aiming behaviour: Movement kinematics depend on the cost of corrective modifications.
    Lyons J; Hansen S; Hurding S; Elliott D
    Exp Brain Res; 2006 Sep; 174(1):95-100. PubMed ID: 16575577
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Investigation of isochrony phenomenon based on the computational theory of human arm trajectory planning.
    Yokoyama H; Saito H; Kurai R; Nambu I; Wada Y
    Hum Mov Sci; 2018 Oct; 61():52-62. PubMed ID: 30015096
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Energy minimization within target-directed aiming: the mediating influence of the number of movements and target size.
    Roberts JW
    Exp Brain Res; 2020 Mar; 238(3):741-749. PubMed ID: 32077987
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Load compensation in human goal-directed arm movements.
    Bock O
    Behav Brain Res; 1990 Dec; 41(3):167-77. PubMed ID: 2288670
    [TBL] [Abstract][Full Text] [Related]  

  • 87. On the coordination of highly dynamic human movements: an extension of the Uncontrolled Manifold approach applied to precision jump in parkour.
    Maldonado G; Bailly F; Souères P; Watier B
    Sci Rep; 2018 Aug; 8(1):12219. PubMed ID: 30111843
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Robot-based methodology for a kinematic and kinetic analysis of unconstrained, but reproducible upper extremity movement.
    Popovic N; Williams S; Schmitz-Rode T; Rau G; Disselhorst-Klug C
    J Biomech; 2009 Jul; 42(10):1570-1573. PubMed ID: 19442979
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Biomechanical Constraints Underlying Motor Primitives Derived from the Musculoskeletal Anatomy of the Human Arm.
    Gritsenko V; Hardesty RL; Boots MT; Yakovenko S
    PLoS One; 2016; 11(10):e0164050. PubMed ID: 27736890
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effects of rotation amplitude on arm movement when rotating a spherical object.
    Lardy J; Beurier G; Wang X
    Ergonomics; 2012; 55(12):1524-34. PubMed ID: 23039715
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Assessment of the accuracy of a human arm model with seven degrees of freedom.
    Prokopenko RA; Frolov AA; Biryukova EV; Roby-Brami A
    J Biomech; 2001 Feb; 34(2):177-85. PubMed ID: 11165281
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.
    Farshchiansadegh A; Melendez-Calderon A; Ranganathan R; Murphey TD; Mussa-Ivaldi FA
    PLoS Comput Biol; 2016 Apr; 12(4):e1004861. PubMed ID: 27035587
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Human arm movements described by a low-dimensional superposition of principal components.
    Sanger TD
    J Neurosci; 2000 Feb; 20(3):1066-72. PubMed ID: 10648712
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model.
    Uno Y; Kawato M; Suzuki R
    Biol Cybern; 1989; 61(2):89-101. PubMed ID: 2742921
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A control systems framework for understanding normal and abnormal posture.
    Lee WA
    Am J Occup Ther; 1989 May; 43(5):291-301. PubMed ID: 2655455
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The influence of task frequency and force direction on psychophysically acceptable forces in the context of the biomechanically weakest links.
    Cudlip AC; Fischer SL; Wells R; Dickerson CR
    J Appl Biomech; 2013 Jun; 29(3):285-91. PubMed ID: 23887978
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Organization of octopus arm movements: a model system for studying the control of flexible arms.
    Gutfreund Y; Flash T; Yarom Y; Fiorito G; Segev I; Hochner B
    J Neurosci; 1996 Nov; 16(22):7297-307. PubMed ID: 8929436
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Activation of human arm muscles during flexion/extension and supination/pronation tasks: a theory on muscle coordination.
    Jongen HA; Denier van der Gon JJ; Gielen CC
    Biol Cybern; 1989; 61(1):1-9. PubMed ID: 2742911
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Affine differential geometry and smoothness maximization as tools for identifying geometric movement primitives.
    Polyakov F
    Biol Cybern; 2017 Feb; 111(1):5-24. PubMed ID: 27822891
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effort, success, and nonuse determine arm choice.
    Schweighofer N; Xiao Y; Kim S; Yoshioka T; Gordon J; Osu R
    J Neurophysiol; 2015 Jul; 114(1):551-9. PubMed ID: 25948869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.