BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18949138)

  • 1. Distribution of linker histone variants during plant cell differentiation in the developmental zones of the maize root, dedifferentiation in callus culture after auxin treatment.
    Alatzas A; Srebreva L; Foundouli A
    Biol Res; 2008; 41(2):205-15. PubMed ID: 18949138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in core histone variant ratios during maize root differentiation, callus formation and in response to plant hormone treatment.
    Alatzas A; Foundouli A
    Biol Res; 2009; 42(4):445-60. PubMed ID: 20140300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of ubiquitinated histone H2A during plant cell differentiation in maize root and dedifferentiation in callus culture.
    Alatzas A; Foundouli A
    Plant Sci; 2006 Oct; 171(4):481-7. PubMed ID: 25193645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana.
    Ortíz-Castro R; Martínez-Trujillo M; López-Bucio J
    Plant Cell Environ; 2008 Oct; 31(10):1497-509. PubMed ID: 18657054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete disintegration of the microtubular cytoskeleton precedes its auxin-mediated reconstruction in postmitotic maize root cells.
    Baluska F; Barlow PW; Volkmann D
    Plant Cell Physiol; 1996 Oct; 37(7):1013-21. PubMed ID: 11536780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of chromatin epigenetic modification patterns among root meristem, elongation and maturation zones in maize (Zea mays L.).
    Yan S; Zhang Q; Li Y; Huang Y; Zhao L; Tan J; He S; Li L
    Cytogenet Genome Res; 2014; 143(1-3):179-88. PubMed ID: 24731999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene.
    Rose RJ; Wang XD; Nolan KE; Rolfe BG
    J Exp Bot; 2006; 57(10):2227-35. PubMed ID: 16714308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of growth and gravitropic response of maize roots by lithium.
    Mulkey TJ
    Gravit Space Biol Bull; 2005 Jun; 18(2):119-20. PubMed ID: 16044636
    [No Abstract]   [Full Text] [Related]  

  • 9. Root cell patterning: a primary target for aluminium toxicity in maize.
    Doncheva S; Amenós M; Poschenrieder C; Barceló J
    J Exp Bot; 2005 Apr; 56(414):1213-20. PubMed ID: 15737983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of selenium on the accumulation of some metals in Zea mays L. plants treated with indole-3-acetic acid.
    Pazurkiewicz-Kocot K; Galas W; Kita A
    Cell Mol Biol Lett; 2003; 8(1):97-103. PubMed ID: 12655362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of auxin receptors.
    Venis MA; Napier RM
    Symp Soc Exp Biol; 1990; 44():55-65. PubMed ID: 1966638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The calcium dependence of auxin action in roots.
    Evans ML; Hasenstein KH
    Physiologist; 1985 Dec; 28(6 Suppl):S119-20. PubMed ID: 3834428
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of auxins on the production of steroidal alkaloids in rapidly proliferating tissue and cell cultures of Solanum lyratum.
    Kuo CI; Chao CH; Lu MK
    Phytochem Anal; 2012; 23(4):400-4. PubMed ID: 22009634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinclorac-induced cell death is accompanied by generation of reactive oxygen species in maize root tissue.
    Sunohara Y; Matsumoto H
    Phytochemistry; 2008 Sep; 69(12):2312-9. PubMed ID: 18674787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone acetylation and reactive oxygen species are involved in the preprophase arrest induced by sodium butyrate in maize roots.
    Zhang Q; Wang P; Hou H; Zhang H; Tan J; Huang Y; Li Y; Wu J; Qiu Z; Li L
    Protoplasma; 2017 Jan; 254(1):167-179. PubMed ID: 26781092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.
    Han W; Rong H; Zhang H; Wang MH
    Biochem Biophys Res Commun; 2009 Jan; 378(4):695-700. PubMed ID: 19056344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specialized zones of development in roots.
    Ishikawa H; Evans ML
    Plant Physiol; 1995; 109(3):725-7. PubMed ID: 11539165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis of possible mechanisms of regulation of root branching].
    Ploshchinskaia ME; Ivanov VB; Salmin SA; Bystrova EI
    Zh Obshch Biol; 2002; 63(1):68-74. PubMed ID: 11881217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation.
    Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F
    J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress.
    Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ
    Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.