These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 18949753)

  • 1. Implementing an energetic life cycle analysis to prove the benefits of lignocellulosic feedstocks with protein separation for the chemical industry from the existing bioethanol industry.
    Brehmer B; Sanders J
    Biotechnol Bioeng; 2009 Feb; 102(3):767-77. PubMed ID: 18949753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the corn-ethanol industry: studying protein separation techniques to obtain higher value-added product options for distillers grains.
    Brehmer B; Bals B; Sanders J; Dale B
    Biotechnol Bioeng; 2008 Sep; 101(1):49-61. PubMed ID: 18646220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioethanol from lignocellulosics: Status and perspectives in Canada.
    Mabee WE; Saddler JN
    Bioresour Technol; 2010 Jul; 101(13):4806-13. PubMed ID: 20006494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Policy options to support biofuel production.
    Mabee WE
    Adv Biochem Eng Biotechnol; 2007; 108():329-57. PubMed ID: 17846726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative life-cycle assessments for biomass-to-ethanol production from different regional feedstocks.
    Kemppainen AJ; Shonnard DR
    Biotechnol Prog; 2005; 21(4):1075-84. PubMed ID: 16080686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol fermentation from biomass resources: current state and prospects.
    Lin Y; Tanaka S
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):627-42. PubMed ID: 16331454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life-cycle energy and environmental analysis of bioethanol production from cassava in Thailand.
    Papong S; Malakul P
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S112-8. PubMed ID: 19766487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process design and optimization of novel wheat-based continuous bioethanol production system.
    Arifeen N; Wang R; Kookos IK; Webb C; Koutinas AA
    Biotechnol Prog; 2007; 23(6):1394-403. PubMed ID: 17927204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuel ethanol production: process design trends and integration opportunities.
    Cardona CA; Sánchez OJ
    Bioresour Technol; 2007 Sep; 98(12):2415-57. PubMed ID: 17336061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein molecular structures and protein fraction profiles of new coproducts from BioEthanol production: a novel approach.
    Yu P; Niu Z; Damiran D
    J Agric Food Chem; 2010 Mar; 58(6):3460-4. PubMed ID: 20180573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic engineering approaches to improve bioethanol production from maize.
    Torney F; Moeller L; Scarpa A; Wang K
    Curr Opin Biotechnol; 2007 Jun; 18(3):193-9. PubMed ID: 17399975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survey of US fuel ethanol plants.
    Saunders JA; Rosentrater KA
    Bioresour Technol; 2009 Jul; 100(13):3277-84. PubMed ID: 19289276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of net energy production and feedstock availability for biobutanol and bioethanol.
    Swana J; Yang Y; Behnam M; Thompson R
    Bioresour Technol; 2011 Jan; 102(2):2112-7. PubMed ID: 20843683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioethanol production from dedicated energy crops and residues in Arkansas, USA.
    Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G
    Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coproduction of bioethanol with other biofuels.
    Ahring BK; Westermann P
    Adv Biochem Eng Biotechnol; 2007; 108():289-302. PubMed ID: 17676282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofuel alternatives to ethanol: pumping the microbial well.
    Fortman JL; Chhabra S; Mukhopadhyay A; Chou H; Lee TS; Steen E; Keasling JD
    Trends Biotechnol; 2008 Jul; 26(7):375-81. PubMed ID: 18471913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.
    Akoh CC; Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2008 Nov; 56(22):10445-51. PubMed ID: 18942836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
    Kaparaju P; Serrano M; Thomsen AB; Kongjan P; Angelidaki I
    Bioresour Technol; 2009 May; 100(9):2562-8. PubMed ID: 19135361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels.
    Weber C; Farwick A; Benisch F; Brat D; Dietz H; Subtil T; Boles E
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1303-15. PubMed ID: 20535464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.