BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 18949886)

  • 1. Cell-free protein expression of membrane proteins using nanolipoprotein particles.
    Katzen F; Fletcher JE; Yang JP; Vasu S; Peterson T; Kudlicki W
    Biotechniques; 2008 Oct; 45(4):469. PubMed ID: 18949886
    [No Abstract]   [Full Text] [Related]  

  • 2. High production of bacteriorhodopsin from wild type Halobacterium salinarum.
    Seyedkarimi MS; Aramvash A; Ramezani R
    Extremophiles; 2015 Sep; 19(5):1021-8. PubMed ID: 26254806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles.
    Cappuccio JA; Blanchette CD; Sulchek TA; Arroyo ES; Kralj JM; Hinz AK; Kuhn EA; Chromy BA; Segelke BW; Rothschild KJ; Fletcher JE; Katzen F; Peterson TC; Kudlicki WA; Bench G; Hoeprich PD; Coleman MA
    Mol Cell Proteomics; 2008 Nov; 7(11):2246-53. PubMed ID: 18603642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-free expression for nanolipoprotein particles: building a high-throughput membrane protein solubility platform.
    Cappuccio JA; Hinz AK; Kuhn EA; Fletcher JE; Arroyo ES; Henderson PT; Blanchette CD; Walsworth VL; Corzett MH; Law RJ; Pesavento JB; Segelke BW; Sulchek TA; Chromy BA; Katzen F; Peterson T; Bench G; Kudlicki W; Hoeprich PD; Coleman MA
    Methods Mol Biol; 2009; 498():273-96. PubMed ID: 18988032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calorimetric investigation of the NABH4-modified bacteriorhodopsin in purple membrane from Halobacterium halobium.
    Shnyrov VL
    Biochem Mol Biol Int; 1994 Sep; 34(2):281-6. PubMed ID: 7849638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane assembly of bacterio-opsin mutants expressed in halobacteria and incorporation of the proteins into phospholipid bilayers.
    Teintze M; Xu ZJ
    Biophys J; 1992 Apr; 62(1):54-5. PubMed ID: 1600098
    [No Abstract]   [Full Text] [Related]  

  • 7. Experimental evidence for membrane-mediated protein-protein interaction.
    Casuso I; Sens P; Rico F; Scheuring S
    Biophys J; 2010 Oct; 99(7):L47-9. PubMed ID: 20923630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-effective cultivation of Halobacterium salinarum providing with bacteriorhodopsin production under controlled stress.
    Kalenov SV; Baurina MM; Skladnev DA; Kuznetsov AY
    J Biotechnol; 2016 Sep; 233():211-8. PubMed ID: 27449487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile isolation of purple membrane from Halobacterium salinarum via aqueous-two-phase system.
    Shiu PJ; Ju YH; Chen HM; Lee CK
    Protein Expr Purif; 2013 Jun; 89(2):219-24. PubMed ID: 23583309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale electrical conductivity of the purple membrane monolayer.
    Casuso I; Fumagalli L; Samitier J; Padrós E; Reggiani L; Akimov V; Gomila G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041919. PubMed ID: 17995038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small protein from the bop-brp intergenic region of Halobacterium salinarum contains a zinc finger motif and regulates bop and crtB1 transcription.
    Tarasov VY; Besir H; Schwaiger R; Klee K; Furtwängler K; Pfeiffer F; Oesterhelt D
    Mol Microbiol; 2008 Feb; 67(4):772-80. PubMed ID: 18179416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton circulation during the photocycle of sensory rhodopsin II.
    Sasaki J; Spudich JL
    Biophys J; 1999 Oct; 77(4):2145-52. PubMed ID: 10512834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-free protein expression of membrane proteins using nanolipoprotein particles.
    Katzen F
    Biotechniques; 2008 Aug; 45(2):190. PubMed ID: 18687069
    [No Abstract]   [Full Text] [Related]  

  • 14. Fourier transform infrared spectroscopic analysis of altered reaction pathways in site-directed mutants: the D212N mutant of bacteriorhodopsin expressed in Halobacterium halobium.
    Braiman MS; Klinger AL; Doebler R
    Biophys J; 1992 Apr; 62(1):56-8. PubMed ID: 1600099
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural changes in bacteriorhodopsin in response to alternate illumination observed by high-speed atomic force microscopy.
    Shibata M; Uchihashi T; Yamashita H; Kandori H; Ando T
    Angew Chem Int Ed Engl; 2011 May; 50(19):4410-3. PubMed ID: 21472832
    [No Abstract]   [Full Text] [Related]  

  • 16. Kinetic folding mechanism of an integral membrane protein examined by pulsed oxidative labeling and mass spectrometry.
    Pan Y; Brown L; Konermann L
    J Mol Biol; 2011 Jul; 410(1):146-58. PubMed ID: 21570983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreversible conformational changes in membrane proteins using light-responsive surfactants.
    Zhang J; Wang SC; Lee CT
    J Phys Chem B; 2009 Jun; 113(25):8569-80. PubMed ID: 19485396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle.
    Olson KD; Spudich JL
    Biophys J; 1993 Dec; 65(6):2578-85. PubMed ID: 8312493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of total proton release in purple membrane suspension by umbelliferone fluorescence quenching technique.
    Sonar S; Singh AK
    Indian J Biochem Biophys; 1992 Jun; 29(3):251-4. PubMed ID: 1324883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal transduction in two light-transducing systems: bacteriorhodopsin and mammalian rhodopsin.
    Khorana HG
    Nucleic Acids Symp Ser; 1993; (29):219. PubMed ID: 8247775
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.