BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18950139)

  • 1. Liquid-Liquid Phase Separations in Urate Oxidase/PEG Mixtures: Characterization and Implications for Protein Crystallization.
    Vivarès D; Bonneté F
    J Phys Chem B; 2004 May; 108(20):6498-507. PubMed ID: 18950139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase diagram for a model of urate oxidase.
    Wentzel N; Pagan DL; Gunton JD
    J Chem Phys; 2007 Oct; 127(16):165105. PubMed ID: 17979398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphism of microcrystalline urate oxidase from Aspergillus flavus.
    Collings I; Watier Y; Giffard M; Dagogo S; Kahn R; Bonneté F; Wright JP; Fitch AN; Margiolaki I
    Acta Crystallogr D Biol Crystallogr; 2010 May; 66(Pt 5):539-48. PubMed ID: 20445229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray scattering studies of Aspergillus flavus urate oxidase: towards a better understanding of PEG effects on the crystallization of large proteins.
    Vivarès D; Bonneté F
    Acta Crystallogr D Biol Crystallogr; 2002 Mar; 58(Pt 3):472-9. PubMed ID: 11856833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition.
    Wang Y; Annunziata O
    J Phys Chem B; 2007 Feb; 111(5):1222-30. PubMed ID: 17266278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative evaluation of colloidal stability of antibody solutions using PEG-induced liquid-liquid phase separation.
    Wang Y; Latypov RF; Lomakin A; Meyer JA; Kerwin BA; Vunnum S; Benedek GB
    Mol Pharm; 2014 May; 11(5):1391-402. PubMed ID: 24679215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring bovine pancreatic trypsin inhibitor phase transitions.
    Grouazel S; Bonneté F; Astier JP; Ferté N; Perez J; Veesler S
    J Phys Chem B; 2006 Oct; 110(39):19664-70. PubMed ID: 17004835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization of IgG1 by mapping its liquid-liquid phase separation curves.
    Jion AI; Goh LT; Oh SK
    Biotechnol Bioeng; 2006 Dec; 95(5):911-8. PubMed ID: 16804945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between two phase transitions: crystallization and liquid-liquid phase separation in a polyolefin blend.
    Zhang X; Wang Z; Dong X; Wang D; Han CC
    J Chem Phys; 2006 Jul; 125(2):24907. PubMed ID: 16848611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catching the PEG-induced attractive interaction between proteins.
    Vivarès D; Belloni L; Tardieu A; Bonneté F
    Eur Phys J E Soft Matter; 2002 Sep; 9(1):15-25. PubMed ID: 15010925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative imaging by confocal scanning fluorescence microscopy of protein crystallization via liquid-liquid phase separation.
    Vivarès D; Kaler EW; Lenhoff AM
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):819-25. PubMed ID: 15930647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved SAXS/WAXS study of the phase behavior and microstructural evolution of drug/PEG solid dispersions.
    Zhu Q; Harris MT; Taylor LS
    Mol Pharm; 2011 Jun; 8(3):932-9. PubMed ID: 21452866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urate oxidase from Aspergillus flavus: new crystal-packing contacts in relation to the content of the active site.
    Retailleau P; Colloc'h N; Vivarès D; Bonneté F; Castro B; El Hajji M; Prangé T
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):218-29. PubMed ID: 15735331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interest of the normalized second virial coefficient and interaction potentials for crystallizing large macromolecules.
    Bonneté F; Vivarès D
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 1):1571-5. PubMed ID: 12351864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration and interactions in protein solutions containing concentrated electrolytes studied by small-angle scattering.
    Zhang F; Roosen-Runge F; Skoda MW; Jacobs RM; Wolf M; Callow P; Frielinghaus H; Pipich V; Prévost S; Schreiber F
    Phys Chem Chem Phys; 2012 Feb; 14(7):2483-93. PubMed ID: 22249363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling High Throughput Microfluidics and Small-Angle X-ray Scattering to Study Protein Crystallization from Solution.
    Pham N; Radajewski D; Round A; Brennich M; Pernot P; Biscans B; Bonneté F; Teychené S
    Anal Chem; 2017 Feb; 89(4):2282-2287. PubMed ID: 28192906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.
    Chow CK; Allan BW; Chai Q; Atwell S; Lu J
    Mol Pharm; 2016 Mar; 13(3):915-23. PubMed ID: 26849155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of monoPEGylated human galectin-2 by small-angle X-ray and neutron scattering: concentration dependence of PEG conformation in the conjugate.
    He L; Wang H; Garamus VM; Hanley T; Lensch M; Gabius HJ; Fee CJ; Middelberg A
    Biomacromolecules; 2010 Dec; 11(12):3504-10. PubMed ID: 21049922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large crystal growth by thermal control allows combined X-ray and neutron crystallographic studies to elucidate the protonation states in Aspergillus flavus urate oxidase.
    Oksanen E; Blakeley MP; Bonneté F; Dauvergne MT; Dauvergne F; Budayova-Spano M
    J R Soc Interface; 2009 Oct; 6 Suppl 5(Suppl 5):S599-610. PubMed ID: 19586953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of PEG crystallization on the self-assembly of PEG/peptide copolymers containing amyloid peptide fragments.
    Hamley IW; Krysmann MJ
    Langmuir; 2008 Aug; 24(15):8210-4. PubMed ID: 18598063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.