These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 1895019)

  • 1. A stochastic model for predator-prey systems: basic properties, stability and computer simulation.
    Abundo M
    J Math Biol; 1991; 29(6):495-511. PubMed ID: 1895019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of stochastic perturbation on prey-predator systems.
    Rudnicki R; Pichór K
    Math Biosci; 2007 Mar; 206(1):108-19. PubMed ID: 16624335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic analysis of the Lotka-Volterra model for ecosystems.
    Cai GQ; Lin YK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041910. PubMed ID: 15600438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predator-prey dynamics in P systems ruled by metabolic algorithm.
    Fontana F; Manca V
    Biosystems; 2008 Mar; 91(3):545-57. PubMed ID: 17720307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival analysis of a stochastic predator-prey model with prey refuge and fear effect.
    Xia Y; Yuan S
    J Biol Dyn; 2020 Dec; 14(1):871-892. PubMed ID: 33269648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A solution to the accelerated-predator-satiety Lotka-Volterra predator-prey problem using Boubaker polynomial expansion scheme.
    Dubey B; Zhao TG; Jonsson M; Rahmanov H
    J Theor Biol; 2010 May; 264(1):154-60. PubMed ID: 20109470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic eco-evolutionary model of a prey-predator community.
    Costa M; Hauzy C; Loeuille N; Méléard S
    J Math Biol; 2016 Feb; 72(3):573-622. PubMed ID: 26001744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic analysis of a pulse-type prey-predator model.
    Wu Y; Zhu WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041911. PubMed ID: 18517660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluctuations and correlations in lattice models for predator-prey interaction.
    Mobilia M; Georgiev IT; Täuber UC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):040903. PubMed ID: 16711780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual based modeling and parameter estimation for a Lotka-Volterra system.
    Waniewski J; Jedruch W
    Math Biosci; 1999 Mar; 157(1-2):23-36. PubMed ID: 10194922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator.
    Nie L; Teng Z; Hu L; Peng J
    Biosystems; 2009 Nov; 98(2):67-72. PubMed ID: 19523503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays.
    Meng X; Chen L
    J Theor Biol; 2006 Dec; 243(4):562-74. PubMed ID: 16934297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The geometrical analysis of a predator-prey model with two state impulses.
    Zhao L; Chen L; Zhang Q
    Math Biosci; 2012 Aug; 238(2):55-64. PubMed ID: 22561587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-equilibrium relaxation in a stochastic lattice Lotka-Volterra model.
    Chen S; Täuber UC
    Phys Biol; 2016 Apr; 13(2):025005. PubMed ID: 27092871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect.
    Bashkirtseva I; Ryashko L
    Chaos; 2011 Dec; 21(4):047514. PubMed ID: 22225388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial variability enhances species fitness in stochastic predator-prey interactions.
    Dobramysl U; Täuber UC
    Phys Rev Lett; 2008 Dec; 101(25):258102. PubMed ID: 19113755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence and extinction of a modified Leslie-Gower Holling-type Ⅱ predator-prey stochastic model in polluted environments with impulsive toxicant input.
    Gao Y; Yao S
    Math Biosci Eng; 2021 Jun; 18(4):4894-4918. PubMed ID: 34198471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The diffusive Lotka-Volterra predator-prey system with delay.
    Al Noufaey KS; Marchant TR; Edwards MP
    Math Biosci; 2015 Dec; 270(Pt A):30-40. PubMed ID: 26471317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic Lotka-Volterra food chains.
    Hening A; Nguyen DH
    J Math Biol; 2018 Jul; 77(1):135-163. PubMed ID: 29150714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of predator-prey populations modelled by perturbed ODEs.
    Froda S; Nkurunziza S
    J Math Biol; 2007 Mar; 54(3):407-51. PubMed ID: 17151886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.