These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 1895019)

  • 21. Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components.
    Rao F; Castillo-Chavez C; Kang Y
    Math Biosci Eng; 2018 Dec; 15(6):1401-1423. PubMed ID: 30418791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements.
    Leander J; Lundh T; Jirstrand M
    Math Biosci; 2014 May; 251():54-62. PubMed ID: 24631177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive behaviour and multiple equilibrium states in a predator-prey model.
    Pimenov A; Kelly TC; Korobeinikov A; O'Callaghan MJ; Rachinskii D
    Theor Popul Biol; 2015 May; 101():24-30. PubMed ID: 25732186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global stability results for a generalized Lotka-Volterra system with distributed delays. Applications to predator-prey and to epidemic systems.
    Beretta E; Capasso V; Rinaldi F
    J Math Biol; 1988; 26(6):661-88. PubMed ID: 3230365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chaotic dynamics of a three species prey-predator competition model with bionomic harvesting due to delayed environmental noise as external driving force.
    Das K; Srinivas MN; Srinivas MA; Gazi NH
    C R Biol; 2012 Aug; 335(8):503-13. PubMed ID: 22938916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asymptotic stability of a modified Lotka-Volterra model with small immigrations.
    Tahara T; Gavina MKA; Kawano T; Tubay JM; Rabajante JF; Ito H; Morita S; Ichinose G; Okabe T; Togashi T; Tainaka KI; Shimizu A; Nagatani T; Yoshimura J
    Sci Rep; 2018 May; 8(1):7029. PubMed ID: 29728625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple extinction routes in stochastic population models.
    Gottesman O; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021140. PubMed ID: 22463185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of a disease affecting a predator on the dynamics of a predator-prey system.
    Auger P; McHich R; Chowdhury T; Sallet G; Tchuente M; Chattopadhyay J
    J Theor Biol; 2009 Jun; 258(3):344-51. PubMed ID: 19063903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong stochastic persistence of some Lévy-driven Lotka-Volterra systems.
    Videla L
    J Math Biol; 2022 Jan; 84(3):11. PubMed ID: 35022843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of deterministic and random refuge in a prey-predator model with parasite infection.
    Mukhopadhyay B; Bhattacharyya R
    Math Biosci; 2012 Sep; 239(1):124-30. PubMed ID: 22609466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of delay in a Lotka-Volterra type predator-prey model with a transmissible disease in the predator species.
    Haque M; Sarwardi S; Preston S; Venturino E
    Math Biosci; 2011 Nov; 234(1):47-57. PubMed ID: 21784082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Martingale solutions and asymptotic behaviors for a stochastic cross-diffusion three-species food chain model with prey-taxis.
    Hu J; Ren J; Zhang Q
    Chaos; 2024 Aug; 34(8):. PubMed ID: 39121004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of a stochastic modified Leslie-Gower predator-prey system with hunting cooperation.
    Li C; Shi P
    J Biol Dyn; 2024 Dec; 18(1):2366495. PubMed ID: 38899433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system.
    Martín-Fernández L; Gilioli G; Lanzarone E; Miguez J; Pasquali S; Ruggeri F; Ruiz DP
    Math Biosci Eng; 2014 Jun; 11(3):573-97. PubMed ID: 24506552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spontaneous symmetry breaking of population: Stochastic Lotka-Volterra model for competition among two similar preys and predators.
    Silva-Dias L; López-Castillo A
    Math Biosci; 2018 Jun; 300():36-46. PubMed ID: 29571811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stochastic mixed-mode oscillations in a three-species predator-prey model.
    Sadhu S; Kuehn C
    Chaos; 2018 Mar; 28(3):033606. PubMed ID: 29604654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A derivation of Holling's type I, II and III functional responses in predator-prey systems.
    Dawes JH; Souza MO
    J Theor Biol; 2013 Jun; 327():11-22. PubMed ID: 23500600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quasicycles in a spatial predator-prey model.
    Lugo CA; McKane AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051911. PubMed ID: 19113159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predator-prey cycles from resonant amplification of demographic stochasticity.
    McKane AJ; Newman TJ
    Phys Rev Lett; 2005 Jun; 94(21):218102. PubMed ID: 16090353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of predator density dependent dispersal of prey on stability of a predator-prey system.
    Mchich R; Auger P; Poggiale JC
    Math Biosci; 2007 Apr; 206(2):343-56. PubMed ID: 16455112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.