BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 18951089)

  • 21. Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition.
    Wang R; He G; Nelman-Gonzalez M; Ashorn CL; Gallick GE; Stukenberg PT; Kirschner MW; Kuang J
    Cell; 2007 Mar; 128(6):1119-32. PubMed ID: 17382881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. XGef influences XRINGO/CDK1 signaling and CPEB activation during Xenopus oocyte maturation.
    Kuo P; Runge E; Lu X; Hake LE
    Differentiation; 2011 Feb; 81(2):133-40. PubMed ID: 21145160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical characterization of Cdk2-Speedy/Ringo A2.
    Cheng A; Gerry S; Kaldis P; Solomon MJ
    BMC Biochem; 2005 Sep; 6():19. PubMed ID: 16191191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MAPK inactivation is required for the G2 to M-phase transition of the first mitotic cell cycle.
    Abrieu A; Fisher D; Simon MN; Dorée M; Picard A
    EMBO J; 1997 Nov; 16(21):6407-13. PubMed ID: 9351823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Down-regulation of cyclin B1 and up-regulation of Wee1 by berberine promotes entry of leukemia cells into the G2/M-phase of the cell cycle.
    Lin CC; Lin SY; Chung JG; Lin JP; Chen GW; Kao ST
    Anticancer Res; 2006; 26(2A):1097-104. PubMed ID: 16619512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell cycle arrest and release in starfish oocytes and eggs.
    Kishimoto T
    Semin Cell Dev Biol; 1998 Oct; 9(5):549-57. PubMed ID: 9835643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomics reveals a switch in CDK1-associated proteins upon M-phase exit during the Xenopus laevis oocyte to embryo transition.
    Marteil G; Gagné JP; Borsuk E; Richard-Parpaillon L; Poirier GG; Kubiak JZ
    Int J Biochem Cell Biol; 2012 Jan; 44(1):53-64. PubMed ID: 21959252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autophosphorylation of Ser66 on Xenopus Myt1 is a prerequisite for meiotic inactivation of Myt1.
    Kristjánsdóttir K; Safi A; Shah C; Rudolph J
    Cell Cycle; 2006 Feb; 5(4):421-7. PubMed ID: 16481744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4-MCM6-MCM7 complex during Epstein-Barr virus productive replication.
    Kudoh A; Daikoku T; Ishimi Y; Kawaguchi Y; Shirata N; Iwahori S; Isomura H; Tsurumi T
    J Virol; 2006 Oct; 80(20):10064-72. PubMed ID: 17005684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro binding of free cdc2 and raf kinase to membrane vesicles: a possible new regulatory mechanism for cdc2 kinase activation in Xenopus oocyte.
    De Smedt V; Crozet N; Jessus C
    Microsc Res Tech; 1999 Apr; 45(1):13-30. PubMed ID: 10206151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery and evaluation of dual CDK1 and CDK2 inhibitors.
    Payton M; Chung G; Yakowec P; Wong A; Powers D; Xiong L; Zhang N; Leal J; Bush TL; Santora V; Askew B; Tasker A; Radinsky R; Kendall R; Coats S
    Cancer Res; 2006 Apr; 66(8):4299-308. PubMed ID: 16618755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA-binding activity of the transcription factor upstream stimulatory factor 1 (USF-1) is regulated by cyclin-dependent phosphorylation.
    Cheung E; Mayr P; Coda-Zabetta F; Woodman PG; Boam DS
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):145-52. PubMed ID: 10548544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of Cdc2 kinase during meiotic maturation of axolotl oocyte.
    Vaur S; Poulhe R; Maton G; Andéol Y; Jessus C
    Dev Biol; 2004 Mar; 267(2):265-78. PubMed ID: 15013793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins.
    Karaiskou A; Perez LH; Ferby I; Ozon R; Jessus C; Nebreda AR
    J Biol Chem; 2001 Sep; 276(38):36028-34. PubMed ID: 11461916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell cycle regulation of the mammalian CDK activator RINGO/Speedy A.
    Dinarina A; Santamaria PG; Nebreda AR
    FEBS Lett; 2009 Sep; 583(17):2772-8. PubMed ID: 19622356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inactivation of the checkpoint kinase Cds1 is dependent on cyclin B-Cdc2 kinase activation at the meiotic G(2)/M-phase transition in Xenopus oocytes.
    Gotoh T; Ohsumi K; Matsui T; Takisawa H; Kishimoto T
    J Cell Sci; 2001 Sep; 114(Pt 18):3397-406. PubMed ID: 11591827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PDK1 is required for the hormonal signaling pathway leading to meiotic resumption in starfish oocytes.
    Hiraoka D; Hori-Oshima S; Fukuhara T; Tachibana K; Okumura E; Kishimoto T
    Dev Biol; 2004 Dec; 276(2):330-6. PubMed ID: 15581868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and comparative analysis of multiple mammalian Speedy/Ringo proteins.
    Cheng A; Xiong W; Ferrell JE; Solomon MJ
    Cell Cycle; 2005 Jan; 4(1):155-65. PubMed ID: 15611625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wee1B is an oocyte-specific kinase involved in the control of meiotic arrest in the mouse.
    Han SJ; Chen R; Paronetto MP; Conti M
    Curr Biol; 2005 Sep; 15(18):1670-6. PubMed ID: 16169490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role for non-proteolytic control of M-phase-promoting factor activity at M-phase exit.
    D'Angiolella V; Palazzo L; Santarpia C; Costanzo V; Grieco D
    PLoS One; 2007 Feb; 2(2):e247. PubMed ID: 17327911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.