These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 18951124)
1. Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina. Bermudez GM; Rodriguez JH; Pignata ML Environ Res; 2009 Jan; 109(1):6-14. PubMed ID: 18951124 [TBL] [Abstract][Full Text] [Related]
2. Antioxidant response of three Tillandsia species transplanted to urban, agricultural, and industrial areas. Bermudez GM; Pignata ML Arch Environ Contam Toxicol; 2011 Oct; 61(3):401-13. PubMed ID: 21279718 [TBL] [Abstract][Full Text] [Related]
3. Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Wannaz ED; Carreras HA; Pérez CA; Pignata ML Sci Total Environ; 2006 May; 361(1-3):267-78. PubMed ID: 16364408 [TBL] [Abstract][Full Text] [Related]
4. Assessment of human health risk related to metals by the use of biomonitors in the province of Córdoba, Argentina. Carreras HA; Wannaz ED; Pignata ML Environ Pollut; 2009 Jan; 157(1):117-22. PubMed ID: 18771831 [TBL] [Abstract][Full Text] [Related]
5. Applications of redundancy analysis for the detection of chemical response patterns to air pollution in lichen. González CM; Pignata ML; Orellana L Sci Total Environ; 2003 Aug; 312(1-3):245-53. PubMed ID: 12873413 [TBL] [Abstract][Full Text] [Related]
6. Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Pignata ML; Gudiño GL; Wannaz ED; Plá RR; González CM; Carreras HA; Orellana L Environ Pollut; 2002; 120(1):59-68. PubMed ID: 12199468 [TBL] [Abstract][Full Text] [Related]
7. Nickel exposure enhances the susceptibility of lichens Usnea amblyoclada and Ramalina celastri to urban atmospheric pollutants. Rodriguez JH; Carreras HA; Pignata ML; González CM Arch Environ Contam Toxicol; 2007 Nov; 53(4):533-40. PubMed ID: 17882471 [TBL] [Abstract][Full Text] [Related]
8. Perturbation vectors to evaluate air quality using lichens and bromeliads: a Brazilian case study. Monna F; Marques AN; Guillon R; Losno R; Couette S; Navarro N; Dongarra G; Tamburo E; Varrica D; Chateau C; Nepomuceno FO Environ Monit Assess; 2017 Oct; 189(11):566. PubMed ID: 29038984 [TBL] [Abstract][Full Text] [Related]
9. Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Figueiredo AM; Nogueira CA; Saiki M; Milian FM; Domingos M Environ Pollut; 2007 Jan; 145(1):279-92. PubMed ID: 16777290 [TBL] [Abstract][Full Text] [Related]
10. Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany). Rodriguez JH; Pignata ML; Fangmeier A; Klumpp A Chemosphere; 2010 Jun; 80(3):208-15. PubMed ID: 20493514 [TBL] [Abstract][Full Text] [Related]
11. Integration of biomonitoring and instrumental techniques to assess the air quality in an industrial area located in the coastal of central Asturias, Spain. Almeida SM; Lage J; Freitas Mdo C; Pedro AI; Ribeiro T; Silva AV; Canha N; Almeida-Silva M; Sitoe T; Dionisio I; Garcia S; Domingues G; de Faria JP; Fernández BG; Ciaparra D; Wolterbeek HT J Toxicol Environ Health A; 2012; 75(22-23):1392-403. PubMed ID: 23095157 [TBL] [Abstract][Full Text] [Related]
12. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Berlizov AN; Blum OB; Filby RH; Malyuk IA; Tryshyn VV Sci Total Environ; 2007 Jan; 372(2-3):693-706. PubMed ID: 17140640 [TBL] [Abstract][Full Text] [Related]
13. Trace element accumulation in Pseudevernia furfuracea (L.) Zopf exposed in Italy's so called Triangle of Death. Sorbo S; Aprile G; Strumia S; Cobianchi RC; Leone A; Basile A Sci Total Environ; 2008 Dec; 407(1):647-54. PubMed ID: 18835631 [TBL] [Abstract][Full Text] [Related]
14. Chemical and C and N stable isotope compositions of three species of epiphytic Morera-Gómez Y; Armas-Camejo A; Santamaría JM; Alonso-Hernández CM; Lasheras E; Widory D; Elustondo D Isotopes Environ Health Stud; 2024 May; 60(2):141-161. PubMed ID: 38270129 [TBL] [Abstract][Full Text] [Related]
15. Transplanted lichens in and around the Mount Carmel National Park and the Haifa Bay industrial region in Israel: physiological and chemical responses. Garty J; Weissman L; Cohen Y; Karnieli A; Orlovsky L Environ Res; 2001 Feb; 85(2):159-76. PubMed ID: 11161665 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Basile A; Sorbo S; Aprile G; Conte B; Castaldo Cobianchi R Environ Pollut; 2008 Jan; 151(2):401-7. PubMed ID: 18179850 [TBL] [Abstract][Full Text] [Related]
17. Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Bergamaschi L; Rizzio E; Giaveri G; Loppi S; Gallorini M Environ Pollut; 2007 Jul; 148(2):468-76. PubMed ID: 17258850 [TBL] [Abstract][Full Text] [Related]
18. Geographic patterns of elemental deposition in the Aegean region of Turkey indicated by the lichen, Xanthoria parietina (L.) Th. Fr. Yenisoy-Karakaş S; Tuncel SG Sci Total Environ; 2004 Aug; 329(1-3):43-60. PubMed ID: 15262157 [TBL] [Abstract][Full Text] [Related]
19. The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada. Carreras HA; Wannaz ED; Perez CA; Pignata ML Environ Res; 2005 Jan; 97(1):50-7. PubMed ID: 15476733 [TBL] [Abstract][Full Text] [Related]
20. Lichens as biomonitors of air quality around a diamond mine, northwest territories, Canada. Naeth MA; Wilkinson SR J Environ Qual; 2008; 37(5):1675-84. PubMed ID: 18689728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]