These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18951175)

  • 1. Analysis of the mobility of DNA double-strand break-containing chromosome domains in living mammalian cells.
    Krawczyk PM; Stap J; Hoebe RA; van Oven CH; Kanaar R; Aten JA
    Methods Mol Biol; 2008; 463():309-20. PubMed ID: 18951175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin mobility is increased at sites of DNA double-strand breaks.
    Krawczyk PM; Borovski T; Stap J; Cijsouw T; ten Cate R; Medema JP; Kanaar R; Franken NA; Aten JA
    J Cell Sci; 2012 May; 125(Pt 9):2127-33. PubMed ID: 22328517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly and function of DNA double-strand break repair foci in mammalian cells.
    Bekker-Jensen S; Mailand N
    DNA Repair (Amst); 2010 Dec; 9(12):1219-28. PubMed ID: 21035408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs) in human cells.
    Becker A; Durante M; Taucher-Scholz G; Jakob B
    PLoS One; 2014; 9(3):e92640. PubMed ID: 24651490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment.
    Schipler A; Mladenova V; Soni A; Nikolov V; Saha J; Mladenov E; Iliakis G
    Nucleic Acids Res; 2016 Sep; 44(16):7673-90. PubMed ID: 27257076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear Foci Assays in Live Cells.
    Mori E; Asaithamby A
    Methods Mol Biol; 2019; 1984():75-85. PubMed ID: 31267422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional stability of damaged chromatin domains along radiation tracks in mammalian cells.
    Jakob B; Splinter J; Taucher-Scholz G
    Radiat Res; 2009 Apr; 171(4):405-18. PubMed ID: 19397441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin structure in double strand break repair.
    Gospodinov A; Herceg Z
    DNA Repair (Amst); 2013 Oct; 12(10):800-10. PubMed ID: 23919923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DSB (Im)mobility and DNA repair compartmentalization in mammalian cells.
    Lemaître C; Soutoglou E
    J Mol Biol; 2015 Feb; 427(3):652-8. PubMed ID: 25463437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin dynamics in DNA double-strand break repair.
    Shi L; Oberdoerffer P
    Biochim Biophys Acta; 2012 Jul; 1819(7):811-9. PubMed ID: 22285574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis.
    Georgescu W; Osseiran A; Rojec M; Liu Y; Bombrun M; Tang J; Costes SV
    PLoS One; 2015; 10(6):e0129438. PubMed ID: 26107175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins.
    Mailand N; Bekker-Jensen S; Faustrup H; Melander F; Bartek J; Lukas C; Lukas J
    Cell; 2007 Nov; 131(5):887-900. PubMed ID: 18001824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in DNA double strand breaks repair in male germ cell types: lessons learned from a differential expression of Mdc1 and 53BP1.
    Ahmed EA; van der Vaart A; Barten A; Kal HB; Chen J; Lou Z; Minter-Dykhouse K; Bartkova J; Bartek J; de Boer P; de Rooij DG
    DNA Repair (Amst); 2007 Sep; 6(9):1243-54. PubMed ID: 17376750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage.
    Park JH; Park EJ; Hur SK; Kim S; Kwon J
    DNA Repair (Amst); 2009 Jan; 8(1):29-39. PubMed ID: 18822392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA repair in the context of chromatin: new molecular insights by the nanoscale detection of DNA repair complexes using transmission electron microscopy.
    Rübe CE; Lorat Y; Schuler N; Schanz S; Wennemuth G; Rübe C
    DNA Repair (Amst); 2011 Apr; 10(4):427-37. PubMed ID: 21342792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal dynamics of 53BP1 dimer recruitment to a DNA double strand break.
    Lou J; Priest DG; Solano A; Kerjouan A; Hinde E
    Nat Commun; 2020 Nov; 11(1):5776. PubMed ID: 33188174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery.
    Oza P; Jaspersen SL; Miele A; Dekker J; Peterson CL
    Genes Dev; 2009 Apr; 23(8):912-27. PubMed ID: 19390086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation.
    Xue L; Yu D; Furusawa Y; Okayasu R; Tong J; Cao J; Fan S
    Mutat Res; 2009 Nov; 670(1-2):15-23. PubMed ID: 19583974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organizing DNA repair in the nucleus: DSBs hit the road.
    Marnef A; Legube G
    Curr Opin Cell Biol; 2017 Jun; 46():1-8. PubMed ID: 28068556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.