These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18951192)

  • 1. Quantification of redox conditions in the nucleus.
    Go YM; Pohl J; Jones DP
    Methods Mol Biol; 2009; 464():303-17. PubMed ID: 18951192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation and nuclear localization of thioredoxin-1 in sparse cell cultures.
    Spielberger JC; Moody AD; Watson WH
    J Cell Biochem; 2008 Aug; 104(5):1879-89. PubMed ID: 18384140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions.
    Hansen JM; Zhang H; Jones DP
    Free Radic Biol Med; 2006 Jan; 40(1):138-45. PubMed ID: 16337887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function.
    Papp LV; Lu J; Striebel F; Kennedy D; Holmgren A; Khanna KK
    Mol Cell Biol; 2006 Jul; 26(13):4895-910. PubMed ID: 16782878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of structural cysteine residues in thioredoxin 1 by aromatic arsenicals enhances cancer cell cytotoxicity caused by the inhibition of thioredoxin reductase 1.
    Zhang X; Lu J; Ren X; Du Y; Zheng Y; Ioannou PV; Holmgren A
    Free Radic Biol Med; 2015 Dec; 89():192-200. PubMed ID: 26169724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells.
    Nkabyo YS; Ziegler TR; Gu LH; Watson WH; Jones DP
    Am J Physiol Gastrointest Liver Physiol; 2002 Dec; 283(6):G1352-9. PubMed ID: 12433666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin redox western analysis.
    Go YM; Jones DP
    Curr Protoc Toxicol; 2009; Chapter 17():Unit17.12. PubMed ID: 23045011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thioredoxin redox status assessment during embryonic development: the redox Western.
    Hansen JM
    Methods Mol Biol; 2012; 889():305-13. PubMed ID: 22669673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective protection of nuclear thioredoxin-1 and glutathione redox systems against oxidation during glucose and glutamine deficiency in human colonic epithelial cells.
    Go YM; Ziegler TR; Johnson JM; Gu L; Hansen JM; Jones DP
    Free Radic Biol Med; 2007 Feb; 42(3):363-70. PubMed ID: 17210449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous expression of glutathione, thioredoxin-1, and their reductases in nerve transected hypoglossal motor neurons of rat.
    Hama I; Nakagomi S; Konishi H; Kiyama H
    Brain Res; 2010 Jan; 1306():1-7. PubMed ID: 19833109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of mercury(II) on Nrf2, thioredoxin reductase-1 and thioredoxin-1 in human monocytes.
    Wataha JC; Lewis JB; McCloud VV; Shaw M; Omata Y; Lockwood PE; Messer RL; Hansen JM
    Dent Mater; 2008 Jun; 24(6):765-72. PubMed ID: 17959236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth-associated modifications of low-molecular-weight thiols and protein sulfhydryls in human bronchial fibroblasts.
    Atzori L; Dypbukt JM; Sundqvist K; Cotgreave I; Edman CC; Moldéus P; Grafström RC
    J Cell Physiol; 1990 Apr; 143(1):165-71. PubMed ID: 2318904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox control systems in the nucleus: mechanisms and functions.
    Go YM; Jones DP
    Antioxid Redox Signal; 2010 Aug; 13(4):489-509. PubMed ID: 20210649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.
    Karimpour S; Lou J; Lin LL; Rene LM; Lagunas L; Ma X; Karra S; Bradbury CM; Markovina S; Goswami PC; Spitz DR; Hirota K; Kalvakolanu DV; Yodoi J; Gius D
    Oncogene; 2002 Sep; 21(41):6317-27. PubMed ID: 12214272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change of redox status and modulation by thiol replenishment in retinal photooxidative damage.
    Tanito M; Nishiyama A; Tanaka T; Masutani H; Nakamura H; Yodoi J; Ohira A
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2392-400. PubMed ID: 12091442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective oxidative stress in cell nuclei by nuclear-targeted D-amino acid oxidase.
    Halvey PJ; Hansen JM; Johnson JM; Go YM; Samali A; Jones DP
    Antioxid Redox Signal; 2007 Jul; 9(7):807-16. PubMed ID: 17508907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.