BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18951306)

  • 1. [Effect of VEGF165 and the VEGF aptamer pegaptanib (Macugen) on the protein composition of tight junctions in microvascular endothelial cells of the retina].
    Deissler HL; Lang GE
    Klin Monbl Augenheilkd; 2008 Oct; 225(10):863-7. PubMed ID: 18951306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VEGF-induced effects on proliferation, migration and tight junctions are restored by ranibizumab (Lucentis) in microvascular retinal endothelial cells.
    Deissler H; Deissler H; Lang S; Lang GE
    Br J Ophthalmol; 2008 Jun; 92(6):839-43. PubMed ID: 18511543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VEGF but not PlGF disturbs the barrier of retinal endothelial cells.
    Deissler HL; Deissler H; Lang GK; Lang GE
    Exp Eye Res; 2013 Oct; 115():162-71. PubMed ID: 23891860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of vascular endothelial growth factor (VEGF) is sufficient to completely restore barrier malfunction induced by growth factors in microvascular retinal endothelial cells.
    Deissler HL; Deissler H; Lang GE
    Br J Ophthalmol; 2011 Aug; 95(8):1151-6. PubMed ID: 21273213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacity of aflibercept to counteract VEGF-stimulated abnormal behavior of retinal microvascular endothelial cells.
    Deissler HL; Lang GK; Lang GE
    Exp Eye Res; 2014 May; 122():20-31. PubMed ID: 24631334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [In vitro studies on the mechanism of action of VEGF and its inhibitors].
    Deissler HL; Lang GE
    Klin Monbl Augenheilkd; 2008 Jul; 225(7):623-8. PubMed ID: 18642204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blocking of VEGF-A is not sufficient to completely revert its long-term effects on the barrier formed by retinal endothelial cells.
    Deissler HL; Rehak M; Busch C; Wolf A
    Exp Eye Res; 2022 Mar; 216():108945. PubMed ID: 35038456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VEGF receptor 2 inhibitor nintedanib completely reverts VEGF-A
    Deissler HL; Stutzer JN; Lang GK; Grisanti S; Lang GE; Ranjbar M
    Exp Eye Res; 2020 May; 194():108004. PubMed ID: 32184103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decursin inhibits VEGF-mediated inner blood-retinal barrier breakdown by suppression of VEGFR-2 activation.
    Kim JH; Kim JH; Lee YM; Ahn EM; Kim KW; Yu YS
    J Cereb Blood Flow Metab; 2009 Sep; 29(9):1559-67. PubMed ID: 19536074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered expression of genes related to blood-retina barrier disruption in streptozotocin-induced diabetes.
    Klaassen I; Hughes JM; Vogels IM; Schalkwijk CG; Van Noorden CJ; Schlingemann RO
    Exp Eye Res; 2009 Jun; 89(1):4-15. PubMed ID: 19284967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and fate of aflibercept in VEGF-A
    Deissler HL; Sommer K; Lang GK; Lang GE
    Exp Eye Res; 2020 Sep; 198():108156. PubMed ID: 32712182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular endothelial growth factor increases GEnC permeability by affecting the distributions of occludin, ZO-1 and tight juction assembly.
    Zhang L; Liu H; Peng YM; Dai YY; Liu FY
    Eur Rev Med Pharmacol Sci; 2015; 19(14):2621-7. PubMed ID: 26221892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actions of bevacizumab and ranibizumab on microvascular retinal endothelial cells: similarities and differences.
    Deissler HL; Deissler H; Lang GE
    Br J Ophthalmol; 2012 Jul; 96(7):1023-8. PubMed ID: 22539748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of protein kinase C is not sufficient to prevent or reverse effects of VEGF165 on claudin-1 and permeability in microvascular retinal endothelial cells.
    Deissler HL; Deissler H; Lang GE
    Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):535-42. PubMed ID: 19643968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endostatin modulates VEGF-mediated barrier dysfunction in the retinal microvascular endothelium.
    Brankin B; Campbell M; Canning P; Gardiner TA; Stitt AW
    Exp Eye Res; 2005 Jul; 81(1):22-31. PubMed ID: 15978251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Single Routes of Intracellular Signaling is Not Sufficient to Neutralize the Biphasic Disturbance of a Retinal Endothelial Cell Barrier Induced by VEGF-A165.
    Deissler HL; Lang GK; Lang GE
    Cell Physiol Biochem; 2017; 42(4):1493-1513. PubMed ID: 28719888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly.
    Wang W; Dentler WL; Borchardt RT
    Am J Physiol Heart Circ Physiol; 2001 Jan; 280(1):H434-40. PubMed ID: 11123261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does VEGF secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight-junction proteins in central nervous system leukemia?
    Feng S; Huang Y; Chen Z
    Med Hypotheses; 2011 May; 76(5):618-21. PubMed ID: 21398042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiopoietin modulation of vascular endothelial growth factor: Effects on retinal endothelial cell permeability.
    Peters S; Cree IA; Alexander R; Turowski P; Ockrim Z; Patel J; Boyd SR; Joussen AM; Ziemssen F; Hykin PG; Moss SE
    Cytokine; 2007 Nov; 40(2):144-50. PubMed ID: 17959386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of VEGF-A is sufficient to abrogate the disturbing effects of VEGF-B together with VEGF-A on retinal endothelial cells.
    Deissler HL; Lang GK; Lang GE
    Graefes Arch Clin Exp Ophthalmol; 2015 Jun; 253(6):885-94. PubMed ID: 25663437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.