BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 18951424)

  • 1. Selective cryolysis: a novel method of non-invasive fat removal.
    Manstein D; Laubach H; Watanabe K; Farinelli W; Zurakowski D; Anderson RR
    Lasers Surg Med; 2008 Nov; 40(9):595-604. PubMed ID: 18951424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperthermic injury to adipocyte cells by selective heating of subcutaneous fat with a novel radiofrequency device: feasibility studies.
    Franco W; Kothare A; Ronan SJ; Grekin RC; McCalmont TH
    Lasers Surg Med; 2010 Jul; 42(5):361-70. PubMed ID: 20583242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryolipolysis for noninvasive fat cell destruction: initial results from a pig model.
    Zelickson B; Egbert BM; Preciado J; Allison J; Springer K; Rhoades RW; Manstein D
    Dermatol Surg; 2009 Oct; 35(10):1462-70. PubMed ID: 19614940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of non-invasive, 1,210 nm laser exposure on adipose tissue: results of a human pilot study.
    Wanner M; Avram M; Gagnon D; Mihm MC; Zurakowski D; Watanabe K; Tannous Z; Anderson RR; Manstein D
    Lasers Surg Med; 2009 Aug; 41(6):401-7. PubMed ID: 19588533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of laser tunnels in laser-assisted lipolysis.
    Seckel BR; Doherty ST; Childs JJ; Smirnov MZ; Cohen RH; Altshuler GB
    Lasers Surg Med; 2009 Dec; 41(10):728-37. PubMed ID: 20014256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a novel device, high-intensity focused ultrasound with a contact cooling for subcutaneous fat reduction.
    Lee HJ; Lee MH; Lee SG; Yeo UC; Chang SE
    Lasers Surg Med; 2016 Nov; 48(9):878-886. PubMed ID: 27551954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled volumetric heating of subcutaneous adipose tissue using a novel radiofrequency technology.
    Franco W; Kothare A; Goldberg DJ
    Lasers Surg Med; 2009 Dec; 41(10):745-50. PubMed ID: 20014265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical effectiveness of non-invasive selective cryolipolysis.
    Kim J; Kim DH; Ryu HJ
    J Cosmet Laser Ther; 2014 Oct; 16(5):209-13. PubMed ID: 25046234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of controlled volumetric tissue heating with radiofrequency on cellulite and the subcutaneous tissue of the buttocks and thighs.
    Emilia del Pino M; Rosado RH; Azuela A; Graciela Guzmán M; Argüelles D; Rodríguez C; Rosado GM
    J Drugs Dermatol; 2006 Sep; 5(8):714-22. PubMed ID: 16989185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound lipoclasia on subcutaneous adipose tissue to produce acute hyperglycemia and enhance acute inflammatory response in healthy female rats.
    Gonçalves WL; Graceli JB; Santos RL; Cicilini MA; Bissoli NS; Abreu GR; Moysés MR
    Dermatol Surg; 2009 Nov; 35(11):1741-5. PubMed ID: 19737292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse model of selective cryolipolysis.
    Salma N; Wang-Evers M; Casper MJ; Karasik D; Andrade YJ; Tannous Z; Manstein D
    Lasers Surg Med; 2023 Jan; 55(1):126-134. PubMed ID: 35819225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effects of cryolipolysis and shock waves for noninvasive body contouring.
    Ferraro GA; De Francesco F; Cataldo C; Rossano F; Nicoletti G; D'Andrea F
    Aesthetic Plast Surg; 2012 Jun; 36(3):666-79. PubMed ID: 22042359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histologic evaluation of interstitial lipolysis comparing a 1064, 1320 and 2100 nm laser in an ex vivo model.
    Khoury JG; Saluja R; Keel D; Detwiler S; Goldman MP
    Lasers Surg Med; 2008 Aug; 40(6):402-6. PubMed ID: 18649385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective photothermolysis of lipid-rich tissues: a free electron laser study.
    Anderson RR; Farinelli W; Laubach H; Manstein D; Yaroslavsky AN; Gubeli J; Jordan K; Neil GR; Shinn M; Chandler W; Williams GP; Benson SV; Douglas DR; Dylla HF
    Lasers Surg Med; 2006 Dec; 38(10):913-9. PubMed ID: 17163478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-assisted liposuction for facial and body contouring and tissue tightening: a 2-year experience with 75 consecutive patients.
    Sasaki GH; Tevez A
    Semin Cutan Med Surg; 2009 Dec; 28(4):226-35. PubMed ID: 20123421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel transcutaneous, non-focused ultrasound energy delivering device is able to induce subcutaneous adipose tissue destruction in an animal model.
    Levi A; Amitai DB; Lapidoth M
    Lasers Surg Med; 2017 Jan; 49(1):110-121. PubMed ID: 27794165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rupture of fat cells using laser-generated ultra short stress waves.
    Kuwahara K; Gladstone HB; Gupta V; Kireev V; Neel V; Moy RL
    Lasers Surg Med; 2003; 32(4):279-85. PubMed ID: 12696095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical efficacy of noninvasive cryolipolysis and its effects on peripheral nerves.
    Coleman SR; Sachdeva K; Egbert BM; Preciado J; Allison J
    Aesthetic Plast Surg; 2009 Jul; 33(4):482-8. PubMed ID: 19296153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved methods for selective cryolipolysis results in subcutaneous fat layer reduction in a porcine model.
    Kwon TR; Yoo KH; Oh CT; Shin DH; Choi EJ; Jung SJ; Hong H; Choi YS; Kim BJ
    Skin Res Technol; 2015 May; 21(2):192-200. PubMed ID: 25220194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcutaneous adipose tissue response to a non-invasive hyperthermic treatment using a 1,060 nm laser.
    Decorato JW; Chen B; Sierra R
    Lasers Surg Med; 2017 Jul; 49(5):480-489. PubMed ID: 28103642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.