These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 18951440)
1. In silico analysis of missense substitutions using sequence-alignment based methods. Tavtigian SV; Greenblatt MS; Lesueur F; Byrnes GB; Hum Mutat; 2008 Nov; 29(11):1327-36. PubMed ID: 18951440 [TBL] [Abstract][Full Text] [Related]
2. Curated multiple sequence alignment for the Adenomatous Polyposis Coli (APC) gene and accuracy of in silico pathogenicity predictions. Karabachev AD; Martini DJ; Hermel DJ; Solcz D; Richardson ME; Pesaran T; Sarkar IN; Greenblatt MS PLoS One; 2020; 15(8):e0233673. PubMed ID: 32750050 [TBL] [Abstract][Full Text] [Related]
3. Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications. Tavtigian SV; Byrnes GB; Goldgar DE; Thomas A Hum Mutat; 2008 Nov; 29(11):1342-54. PubMed ID: 18951461 [TBL] [Abstract][Full Text] [Related]
4. An analysis of unclassified missense substitutions in human BRCA1. Tavtigian SV; Samollow PB; de Silva D; Thomas A Fam Cancer; 2006; 5(1):77-88. PubMed ID: 16528611 [TBL] [Abstract][Full Text] [Related]
5. Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Chan PA; Duraisamy S; Miller PJ; Newell JA; McBride C; Bond JP; Raevaara T; Ollila S; Nyström M; Grimm AJ; Christodoulou J; Oetting WS; Greenblatt MS Hum Mutat; 2007 Jul; 28(7):683-93. PubMed ID: 17370310 [TBL] [Abstract][Full Text] [Related]
6. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants. Greenblatt MS; Beaudet JG; Gump JR; Godin KS; Trombley L; Koh J; Bond JP Oncogene; 2003 Feb; 22(8):1150-63. PubMed ID: 12606942 [TBL] [Abstract][Full Text] [Related]
7. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. Abkevich V; Zharkikh A; Deffenbaugh AM; Frank D; Chen Y; Shattuck D; Skolnick MH; Gutin A; Tavtigian SV J Med Genet; 2004 Jul; 41(7):492-507. PubMed ID: 15235020 [TBL] [Abstract][Full Text] [Related]
8. Clinical classification of BRCA1 and BRCA2 DNA sequence variants: the value of cytokeratin profiles and evolutionary analysis--a report from the kConFab Investigators. Spurdle AB; Lakhani SR; Healey S; Parry S; Da Silva LM; Brinkworth R; Hopper JL; Brown MA; Babikyan D; Chenevix-Trench G; Tavtigian SV; Goldgar DE; J Clin Oncol; 2008 Apr; 26(10):1657-63. PubMed ID: 18375895 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches. Guidugli L; Shimelis H; Masica DL; Pankratz VS; Lipton GB; Singh N; Hu C; Monteiro ANA; Lindor NM; Goldgar DE; Karchin R; Iversen ES; Couch FJ Am J Hum Genet; 2018 Feb; 102(2):233-248. PubMed ID: 29394989 [TBL] [Abstract][Full Text] [Related]
10. Assessing pathogenicity: overview of results from the IARC Unclassified Genetic Variants Working Group. Tavtigian SV; Greenblatt MS; Goldgar DE; Boffetta P; Hum Mutat; 2008 Nov; 29(11):1261-4. PubMed ID: 18951436 [No Abstract] [Full Text] [Related]
11. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Plon SE; Eccles DM; Easton D; Foulkes WD; Genuardi M; Greenblatt MS; Hogervorst FB; Hoogerbrugge N; Spurdle AB; Tavtigian SV; Hum Mutat; 2008 Nov; 29(11):1282-91. PubMed ID: 18951446 [TBL] [Abstract][Full Text] [Related]
13. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants. Mercatanti A; Lodovichi S; Cervelli T; Galli A FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29069390 [TBL] [Abstract][Full Text] [Related]
14. Evaluating the relevance of sequence conservation in the prediction of pathogenic missense variants. Capriotti E; Fariselli P Hum Genet; 2022 Oct; 141(10):1649-1658. PubMed ID: 35098354 [TBL] [Abstract][Full Text] [Related]
15. Functional impact of missense variants in BRCA1 predicted by supervised learning. Karchin R; Monteiro AN; Tavtigian SV; Carvalho MA; Sali A PLoS Comput Biol; 2007 Feb; 3(2):e26. PubMed ID: 17305420 [TBL] [Abstract][Full Text] [Related]
16. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Mathe E; Olivier M; Kato S; Ishioka C; Hainaut P; Tavtigian SV Nucleic Acids Res; 2006; 34(5):1317-25. PubMed ID: 16522644 [TBL] [Abstract][Full Text] [Related]
17. In-silico Analysis of Accetturo M; Bartolomeo N; Stella A Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31979111 [No Abstract] [Full Text] [Related]
18. Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hicks S; Wheeler DA; Plon SE; Kimmel M Hum Mutat; 2011 Jun; 32(6):661-8. PubMed ID: 21480434 [TBL] [Abstract][Full Text] [Related]
19. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides. Martín-Navarro A; Gaudioso-Simón A; Álvarez-Jarreta J; Montoya J; Mayordomo E; Ruiz-Pesini E BMC Bioinformatics; 2017 Mar; 18(1):158. PubMed ID: 28270093 [TBL] [Abstract][Full Text] [Related]
20. Classification of missense variants of unknown significance in BRCA1 based on clinical and tumor information. Osorio A; Milne RL; Honrado E; Barroso A; Diez O; Salazar R; de la Hoya M; Vega A; Benítez J Hum Mutat; 2007 May; 28(5):477-85. PubMed ID: 17279547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]