These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 18951601)
1. Thickness vibration of piezoelectric plates of 6mm crystals with tilted six-fold axis and two-layered thick electrodes. Du J; Xian K; Wang J; Yang J Ultrasonics; 2009 Feb; 49(2):149-52. PubMed ID: 18951601 [TBL] [Abstract][Full Text] [Related]
2. Vibration of a thickness-twist mode piezoelectric resonator with asymmetric, nonuniform electrodes. Yang J; Chen Z; Hu Y IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):841-8. PubMed ID: 18467228 [TBL] [Abstract][Full Text] [Related]
3. Piezoelectric ceramic disks with thickness-graded material properties. Lee PY; Yu JD; Li X; Shih WH IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):205-15. PubMed ID: 18238415 [TBL] [Abstract][Full Text] [Related]
4. Governing equations for a piezoelectric plate with graded properties across the thickness. Lee PY; Yu JD IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):236-50. PubMed ID: 18244175 [TBL] [Abstract][Full Text] [Related]
5. Vibrations of an asymmetrically electroded piezoelectric plate. Yang J; Zhou H; Wang Z IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2031-8. PubMed ID: 16422415 [TBL] [Abstract][Full Text] [Related]
6. Theoretical analysis of a ceramic plate thickness-shear mode piezoelectric transformer. Xu L; Zhang Y; Fan H; Hu J; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):613-21. PubMed ID: 19411219 [TBL] [Abstract][Full Text] [Related]
7. Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation. Liu B; Jiang Q; Xie H; Yang J Ultrasonics; 2011 Apr; 51(3):376-81. PubMed ID: 21145572 [TBL] [Abstract][Full Text] [Related]
8. Mechanical effects of electrodes on the vibrations of quartz crystal plates. Lee PC; Huang R IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):612-25. PubMed ID: 12046937 [TBL] [Abstract][Full Text] [Related]
9. Lee plate equations for electroded quartz crystal plates with the consideration of electrode density and stiffness. Wang J; Chen G; Du J IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):503-7. PubMed ID: 18334357 [TBL] [Abstract][Full Text] [Related]
10. Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations. Wu R; Wang W; Chen G; Du J; Ma T; Wang J Ultrasonics; 2016 Feb; 65():338-44. PubMed ID: 26433435 [TBL] [Abstract][Full Text] [Related]
11. Quasi-thickness-shear waves in thin-film piezoelectric resonators of ZnO and AlN with tilted C-axis. Cao X; Jin F; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2522-7. PubMed ID: 23192816 [TBL] [Abstract][Full Text] [Related]
12. Second-order theories for extensional vibrations of piezoelectric crystal plates and strips. Lee PC; Edwards NP; Lin WS; Syngellakis S IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1497-506. PubMed ID: 12484472 [TBL] [Abstract][Full Text] [Related]
13. An accurate method for the determination of complex coefficients of single crystal piezoelectric resonators I: theory. Du XH; Wang QM; Uchino K IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):227-37. PubMed ID: 15055813 [TBL] [Abstract][Full Text] [Related]
14. The determination of electrical parameters of quartz crystal resonators with the consideration of dissipation. Wang J; Zhao W; Du J Ultrasonics; 2006 Dec; 44 Suppl 1():e869-73. PubMed ID: 16843512 [TBL] [Abstract][Full Text] [Related]
15. Propagation of thickness-twist waves in a piezoelectric ceramic plate with unattached electrodes. Qian ZH; Kishimoto K; Yang J Ultrasonics; 2009 Jun; 49(6-7):501-4. PubMed ID: 19297001 [TBL] [Abstract][Full Text] [Related]
16. Vibrations and static responses of asymmetric bimorph disks of piezoelectric ceramics. Lee PY; Huang R; Li X; Shih WH IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):706-15. PubMed ID: 18238600 [TBL] [Abstract][Full Text] [Related]
17. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method. Wu R; Wang J; Du J; Huang D; Yan W; Hu Y IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):30-9. PubMed ID: 22293733 [TBL] [Abstract][Full Text] [Related]
18. Piezoacoustic wave spectra using improved surface impedance matrix: application to high impedance-contrast layered plates. Zhang VY; Dubus B; Collet B; Destrade M J Acoust Soc Am; 2008 Apr; 123(4):1972-82. PubMed ID: 18397005 [TBL] [Abstract][Full Text] [Related]
19. An analysis of thickness-shear vibrations of doubly-rotated quartz crystal plates with the corrected first-order Mindlin plate equations. Du J; Wang W; Chen G; Wu R; Huang D; Ma T; Wang J IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2371-80. PubMed ID: 24158292 [TBL] [Abstract][Full Text] [Related]
20. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates. Yong YK; Wang J; Imai T IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]