These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 18951881)
1. Nitric oxide synthases are crucially involved in the development of the severe cardiomyopathy of caveolin-1 knockout mice. Wunderlich C; Schober K; Kasper M; Heerwagen C; Marquetant R; Ebner B; Forkmann M; Schoen S; Braun-Dullaeus RC; Schmeisser A; Strasser RH Biochem Biophys Res Commun; 2008 Dec; 377(3):769-74. PubMed ID: 18951881 [TBL] [Abstract][Full Text] [Related]
3. The adverse cardiopulmonary phenotype of caveolin-1 deficient mice is mediated by a dysfunctional endothelium. Wunderlich C; Schober K; Schmeisser A; Heerwagen C; Tausche AK; Steinbronn N; Brandt A; Kasper M; Schwencke C; Braun-Dullaeus RC; Strasser RH J Mol Cell Cardiol; 2008 May; 44(5):938-47. PubMed ID: 18417152 [TBL] [Abstract][Full Text] [Related]
4. Interaction of caveolin-1, nitric oxide, and nitric oxide synthases in hypoxic human SK-N-MC neuroblastoma cells. Shen J; Lee W; Li Y; Lau CF; Ng KM; Fung ML; Liu KJ J Neurochem; 2008 Oct; 107(2):478-87. PubMed ID: 18717816 [TBL] [Abstract][Full Text] [Related]
5. Disruption of caveolin-1 leads to enhanced nitrosative stress and severe systolic and diastolic heart failure. Wunderlich C; Schober K; Lange SA; Drab M; Braun-Dullaeus RC; Kasper M; Schwencke C; Schmeisser A; Strasser RH Biochem Biophys Res Commun; 2006 Feb; 340(2):702-8. PubMed ID: 16380094 [TBL] [Abstract][Full Text] [Related]
6. Control of blood pressure variability in caveolin-1-deficient mice: role of nitric oxide identified in vivo through spectral analysis. Desjardins F; Lobysheva I; Pelat M; Gallez B; Feron O; Dessy C; Balligand JL Cardiovasc Res; 2008 Aug; 79(3):527-36. PubMed ID: 18349137 [TBL] [Abstract][Full Text] [Related]
7. Caveolin-1 is important for nitric oxide-mediated angiogenesis in fibrin gels with human umbilical vein endothelial cells. Pan YM; Yao YZ; Zhu ZH; Sun XT; Qiu YD; Ding YT Acta Pharmacol Sin; 2006 Dec; 27(12):1567-74. PubMed ID: 17112410 [TBL] [Abstract][Full Text] [Related]
9. NOS2 deficiency increases intestinal metabolism both in nonstimulated and endotoxemic mice. Vissers YL; Hallemeesch MM; Soeters PB; Lamers WH; Deutz NE Am J Physiol Gastrointest Liver Physiol; 2004 May; 286(5):G747-51. PubMed ID: 14656712 [TBL] [Abstract][Full Text] [Related]
10. Targeted mutation of Cav-1 alleviates the effect of endotoxin in the inhibition of ET-1-mediated eNOS activation in the liver. Kwok W; Clemens MG Shock; 2010 Apr; 33(4):392-8. PubMed ID: 19730165 [TBL] [Abstract][Full Text] [Related]
11. Role of nitric oxide produced by constitutive and inducible nitric oxide synthases in the mouse gastric fundus. Arab HA; Hassanpour H; Bozorgi A Clin Exp Pharmacol Physiol; 2008 Sep; 35(9):1038-42. PubMed ID: 18505451 [TBL] [Abstract][Full Text] [Related]
12. Orexin-A-induced feeding is dependent on nitric oxide. Farr SA; Banks WA; Kumar VB; Morley JE Peptides; 2005 May; 26(5):759-65. PubMed ID: 15808906 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Chen Z; Bakhshi FR; Shajahan AN; Sharma T; Mao M; Trane A; Bernatchez P; van Nieuw Amerongen GP; Bonini MG; Skidgel RA; Malik AB; Minshall RD Mol Biol Cell; 2012 Apr; 23(7):1388-98. PubMed ID: 22323292 [TBL] [Abstract][Full Text] [Related]
14. Endothelial nitric oxide synthase activation contributes to post-exercise hypotension in spontaneously hypertensive rats. Lee SK; Kim CS; Kim HS; Cho EJ; Joo HK; Lee JY; Lee EJ; Park JB; Jeon BH Biochem Biophys Res Commun; 2009 May; 382(4):711-4. PubMed ID: 19306842 [TBL] [Abstract][Full Text] [Related]
15. Small artery remodeling and erythrocyte deformability in L-NAME-induced hypertension: role of transglutaminases. Pistea A; Bakker EN; Spaan JA; Hardeman MR; van Rooijen N; VanBavel E J Vasc Res; 2008; 45(1):10-8. PubMed ID: 17898543 [TBL] [Abstract][Full Text] [Related]
16. [Using NO-synthase inhibitors derived from L-arginine for preventing acute experimental lung edema development in mice]. Torkunov PA; Shabanov PD Eksp Klin Farmakol; 2009; 72(2):44-6. PubMed ID: 19441729 [TBL] [Abstract][Full Text] [Related]
17. Caveolin-1 ablation reduces the adverse cardiovascular effects of N-omega-nitro-L-arginine methyl ester and angiotensin II. Pojoga LH; Romero JR; Yao TM; Loutraris P; Ricchiuti V; Coutinho P; Guo C; Lapointe N; Stone JR; Adler GK; Williams GH Endocrinology; 2010 Mar; 151(3):1236-46. PubMed ID: 20097717 [TBL] [Abstract][Full Text] [Related]
18. Endothelium negatively modulates the vascular relaxation induced by nitric oxide donor, due to uncoupling NO synthase. Bonaventura D; Lunardi CN; Rodrigues GJ; Neto MA; Vercesi JA; de Lima RG; da Silva RS; Bendhack LM J Inorg Biochem; 2009 Oct; 103(10):1366-74. PubMed ID: 19699534 [TBL] [Abstract][Full Text] [Related]
19. Coronary flow regulation in mouse heart during hypercapnic acidosis: role of NO and its compensation during eNOS impairment. Heintz A; Damm M; Brand M; Koch T; Deussen A Cardiovasc Res; 2008 Jan; 77(1):188-96. PubMed ID: 18006478 [TBL] [Abstract][Full Text] [Related]
20. Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. Schubert W; Frank PG; Woodman SE; Hyogo H; Cohen DE; Chow CW; Lisanti MP J Biol Chem; 2002 Oct; 277(42):40091-8. PubMed ID: 12167625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]