These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18951902)

  • 1. The structure of monoamine oxidase from Aspergillus niger provides a molecular context for improvements in activity obtained by directed evolution.
    Atkin KE; Reiss R; Koehler V; Bailey KR; Hart S; Turkenburg JP; Turner NJ; Brzozowski AM; Grogan G
    J Mol Biol; 2008 Dec; 384(5):1218-31. PubMed ID: 18951902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of carboxyl-terminal truncations on the activity and solubility of human monoamine oxidase B.
    Rebrin I; Geha RM; Chen K; Shih JC
    J Biol Chem; 2001 Aug; 276(31):29499-506. PubMed ID: 11371556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity.
    Zhou BP; Lewis DA; Kwan SW; Kirksey TJ; Abell CW
    Biochemistry; 1995 Jul; 34(29):9526-31. PubMed ID: 7626622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amine oxidases from Aspergillus niger: identification of a novel flavin-dependent enzyme.
    Schilling B; Lerch K
    Biochim Biophys Acta; 1995 Apr; 1243(3):529-37. PubMed ID: 7727530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a highly conserved FAD-binding site in human monoamine oxidase B.
    Zhou BP; Wu B; Kwan SW; Abell CW
    J Biol Chem; 1998 Jun; 273(24):14862-8. PubMed ID: 9614088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a dinucleotide-binding site in monoamine oxidase B by site-directed mutagenesis.
    Kwan SW; Lewis DA; Zhou BP; Abell CW
    Arch Biochem Biophys; 1995 Jan; 316(1):385-91. PubMed ID: 7840641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-rational Directed Evolution of Monoamine Oxidase for Kinetic Resolution of rac-Mexiletine.
    Chen Z; Ma Y; He M; Ren H; Zhou S; Lai D; Wang Z; Jiang L
    Appl Biochem Biotechnol; 2015 Aug; 176(8):2267-78. PubMed ID: 26093614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Isolation and characterization of an evolutionary precursor of human monoamine oxidases A and B].
    Singer TP; Iankovskaia VL; Bernard S; Cronin C; Sablin SO
    Vopr Med Khim; 1997; 43(6):440-56. PubMed ID: 9503562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional role of the "aromatic cage" in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins.
    Li M; Binda C; Mattevi A; Edmondson DE
    Biochemistry; 2006 Apr; 45(15):4775-84. PubMed ID: 16605246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine-42 and threonine-45 are required for FAD incorporation and catalytic activity in human monoamine oxidase B.
    Kirksey TJ; Kwan SW; Abell CW
    Biochemistry; 1998 Sep; 37(35):12360-6. PubMed ID: 9724550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of variants of monoamine oxidase from Aspergillus niger.
    Atkin KE; Reiss R; Turner NJ; Brzozowski AM; Grogan G
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Mar; 64(Pt 3):182-5. PubMed ID: 18323603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of an evolutionary precursor of human monoamine oxidases A and B.
    Sablin SO; Yankovskaya V; Bernard S; Cronin CN; Singer TP
    Eur J Biochem; 1998 Apr; 253(1):270-9. PubMed ID: 9578486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and upscale production of monoamine oxidase N (MAO-N D5) by Pichia pastoris.
    Markošová K; Camattari A; Rosenberg M; Glieder A; Turner NJ; Rebroš M
    Biotechnol Lett; 2018 Jan; 40(1):127-133. PubMed ID: 29019030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of an amine oxidase for the preparative deracemisation of cyclic secondary amines.
    Carr R; Alexeeva M; Dawson MJ; Gotor-Fernández V; Humphrey CE; Turner NJ
    Chembiochem; 2005 Apr; 6(4):637-9. PubMed ID: 15719348
    [No Abstract]   [Full Text] [Related]  

  • 15. The FAD binding sites of human monoamine oxidases A and B.
    Edmondson DE; Binda C; Mattevi A
    Neurotoxicology; 2004 Jan; 25(1-2):63-72. PubMed ID: 14697881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures.
    Binda C; Li M; Hubalek F; Restelli N; Edmondson DE; Mattevi A
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9750-5. PubMed ID: 12913124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavinylation of monoamine oxidase B.
    Zhou BP; Lewis DA; Kwan SW; Abell CW
    J Biol Chem; 1995 Oct; 270(40):23653-60. PubMed ID: 7559533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine residues near the FAD binding site are critical for FAD binding and for the maintenance of the stable and active conformation of rat monoamine oxidase A.
    Ma J; Ito A
    J Biochem; 2002 Jan; 131(1):107-11. PubMed ID: 11754741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectrometric evidence for the flavin-1-phenylcyclopropylamine inactivator adduct with monoamine oxidase N.
    Mitchell DJ; Nikolic D; Rivera E; Sablin SO; Choi S; van Breemen RB; Singer TP; Silverman RB
    Biochemistry; 2001 May; 40(18):5447-56. PubMed ID: 11331009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characteristics of a single and novel form of carp (Cyprinus carpio) monoamine oxidase.
    Sugimoto H; Taguchi YD; Shibata K; Kinemuchi H
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Mar; 155(3):266-71. PubMed ID: 19932189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.