BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18952048)

  • 1. Intrinsic uncoupling in the ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2008 Dec; 1777(12):1518-27. PubMed ID: 18952048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological ligands ADP and Pi modulate the degree of intrinsic coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus.
    Turina P; Giovannini D; Gubellini F; Melandri BA
    Biochemistry; 2004 Aug; 43(34):11126-34. PubMed ID: 15323572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of proton pumping efficiency in bacterial ATP synthases.
    Turina P; Rebecchi A; D'Alessandro M; Anefors S; Melandri BA
    Biochim Biophys Acta; 2006; 1757(5-6):320-5. PubMed ID: 16765908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2011 Jan; 1807(1):130-43. PubMed ID: 20800570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement of medium ADP for the steady-state hydrolysis of ATP by the proton-translocating Paracoccus denitrificans Fo.F1-ATP synthase.
    Zharova TV; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):304-10. PubMed ID: 16730637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Met23Lys mutation in subunit gamma of F(O)F(1)-ATP synthase from Rhodobacter capsulatus impairs the activation of ATP hydrolysis by protonmotive force.
    Feniouk BA; Rebecchi A; Giovannini D; Anefors S; Mulkidjanian AY; Junge W; Turina P; Melandri BA
    Biochim Biophys Acta; 2007 Nov; 1767(11):1319-30. PubMed ID: 17904517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of coupling in the Escherichia coli ATP synthase by ADP and P
    D'Alessandro M; Turina P; Melandri BA; Dunn SD
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):34-44. PubMed ID: 27751906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of Some Essential Oil Constituents as Potential Inhibitors of the ATP Synthase of Escherichia coli.
    Issa D; Najjar A; Greige-Gerges H; Nehme H
    J Food Sci; 2019 Jan; 84(1):138-146. PubMed ID: 30569590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Escherichia coli F1F0 ATP synthase displays biphasic synthesis kinetics.
    Tomashek JJ; Glagoleva OB; Brusilow WS
    J Biol Chem; 2004 Feb; 279(6):4465-70. PubMed ID: 14602713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP hydrolysis in ATP synthases can be differently coupled to proton transport and modulated by ADP and phosphate: a structure based model of the mechanism.
    D'Alessandro M; Melandri BA
    Biochim Biophys Acta; 2010; 1797(6-7):755-62. PubMed ID: 20230778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-linked binding of Pi is required for continuous steady-state proton-translocating ATP hydrolysis catalyzed by F0.F1 ATP synthase.
    Zharova TV; Vinogradov AD
    Biochemistry; 2006 Dec; 45(48):14552-8. PubMed ID: 17128994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F
    Lapashina AS; Shugaeva TE; Berezina KM; Kholina TD; Feniouk BA
    Biochemistry (Mosc); 2019 Apr; 84(4):407-415. PubMed ID: 31228932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functionally inactive, cold-stabilized form of the Escherichia coli F1Fo ATP synthase.
    Galkin MA; Ishmukhametov RR; Vik SB
    Biochim Biophys Acta; 2006 Mar; 1757(3):206-14. PubMed ID: 16581013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in Escherichia coli ATP synthase.
    Lapashina AS; Prikhodko AS; Shugaeva TE; Feniouk BA
    Biochim Biophys Acta Bioenerg; 2019 Mar; 1860(3):181-188. PubMed ID: 30528692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores.
    Feniouk BA; Cherepanov DA; Junge W; Mulkidjanian AY
    Biochim Biophys Acta; 2001 Nov; 1506(3):189-203. PubMed ID: 11779552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Escherichia coli FOF1 gammaM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway.
    Al-Shawi MK; Ketchum CJ; Nakamoto RK
    Biochemistry; 1997 Oct; 36(42):12961-9. PubMed ID: 9335556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of steady-state mitochondrial ATP synthesis by bicarbonate, an activating anion of ATP hydrolysis.
    Lodeyro AF; Calcaterra NB; Roveri OA
    Biochim Biophys Acta; 2001 Nov; 1506(3):236-43. PubMed ID: 11779557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase.
    Feniouk BA; Suzuki T; Yoshida M
    J Biol Chem; 2007 Jan; 282(1):764-72. PubMed ID: 17092944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two distinct proton binding sites in the ATP synthase family.
    von Ballmoos C; Dimroth P
    Biochemistry; 2007 Oct; 46(42):11800-9. PubMed ID: 17910472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.