BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18952048)

  • 21. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit.
    Keis S; Stocker A; Dimroth P; Cook GM
    J Bacteriol; 2006 Jun; 188(11):3796-804. PubMed ID: 16707672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Essential arginine in subunit a and aspartate in subunit c of FoF1 ATP synthase: effect of repositioning within helix 4 of subunit a and helix 2 of subunit c.
    Langemeyer L; Engelbrecht S
    Biochim Biophys Acta; 2007 Jul; 1767(7):998-1005. PubMed ID: 17583672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone.
    Russell R; Jordan R; McMacken R
    Biochemistry; 1998 Jan; 37(2):596-607. PubMed ID: 9425082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneity of photosynthetic membranes from Rhodobacter capsulatus: size dispersion and ATP synthase distribution.
    Gubellini F; Francia F; Turina P; Lévy D; Venturoli G; Melandri BA
    Biochim Biophys Acta; 2007 Nov; 1767(11):1340-52. PubMed ID: 17961501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutation Q259L in subunit beta in Bacillus subtilis ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures.
    Lapashina AS; Feniouk BA
    Biochem Biophys Res Commun; 2019 Jan; 509(1):102-107. PubMed ID: 30580998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of ATP synthase residues alphaArg-376, betaArg-182, and betaLys-155 in Pi binding.
    Ahmad Z; Senior AE
    FEBS Lett; 2005 Jan; 579(2):523-8. PubMed ID: 15642370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The activity of the ATP synthase from Escherichia coli is regulated by the transmembrane proton motive force.
    Fischer S; Graber P; Turina P
    J Biol Chem; 2000 Sep; 275(39):30157-62. PubMed ID: 11001951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP synthesis at physiological nucleotide concentrations.
    Meyrat A; von Ballmoos C
    Sci Rep; 2019 Feb; 9(1):3070. PubMed ID: 30816129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of pausing F1 motor by external force.
    Hirono-Hara Y; Ishizuka K; Kinosita K; Yoshida M; Noji H
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4288-93. PubMed ID: 15758075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The decay of the ATPase activity of light plus thiol-activated thylakoid membranes in the dark.
    McCarty RE
    J Bioenerg Biomembr; 2006 Feb; 38(1):67-74. PubMed ID: 16775764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of fully assembled and active Aquifex aeolicus F1FO ATP synthase in Escherichia coli.
    Zhang C; Allegretti M; Vonck J; Langer JD; Marcia M; Peng G; Michel H
    Biochim Biophys Acta; 2014 Jan; 1840(1):34-40. PubMed ID: 24005236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential effects of triphenyltin and 8-azido-ATP on the ATP synthesis, ATP-Pi exchange, and ATP hydrolysis in liposomes containing ATP synthase and bacteriorhodopsin.
    Van der Bend RL; Duetz W; Colen AM; Van Dam K; Berden JA
    Arch Biochem Biophys; 1985 Sep; 241(2):461-71. PubMed ID: 2864019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic modelling of the proton translocating CF0CF1-ATP synthase from spinach.
    Pänke O; Rumberg B
    FEBS Lett; 1996 Apr; 383(3):196-200. PubMed ID: 8925895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton coupling is preserved in membrane-bound chloroplast ATPase activated by high concentrations of tentoxin.
    Sigalat C; Pitard B; Haraux F
    FEBS Lett; 1995 Jul; 368(2):253-6. PubMed ID: 7628616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions between beta D372 and gamma subunit N-terminus residues gamma K9 and gamma S12 are important to catalytic activity catalyzed by Escherichia coli F1F0-ATP synthase.
    Lowry DS; Frasch WD
    Biochemistry; 2005 May; 44(19):7275-81. PubMed ID: 15882066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of ADP-Inhibited ATP Hydrolysis in Single Proton-Pumping F
    Pérez I; Heitkamp T; Börsch M
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(O)F(1)-ATP synthase each.
    Feniouk BA; Cherepanov DA; Voskoboynikova NE; Mulkidjanian AY; Junge W
    Biophys J; 2002 Mar; 82(3):1115-22. PubMed ID: 11867431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATPase/synthase activity of Paracoccus denitrificans Fo·F1 as related to the respiratory control phenomenon.
    Zharova TV; Vinogradov AD
    Biochim Biophys Acta; 2014 Aug; 1837(8):1322-9. PubMed ID: 24732246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of ATP hydrolysis catalyzed by isolated TF1 and reconstituted TF0F1 ATPase.
    Rögner M; Gräber P
    Eur J Biochem; 1986 Sep; 159(2):255-61. PubMed ID: 2875871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.