BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18952048)

  • 41. Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis.
    Slepenkov SV; Witt SN
    Biochemistry; 1998 Jan; 37(4):1015-24. PubMed ID: 9454592
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase.
    Diez M; Zimmermann B; Börsch M; König M; Schweinberger E; Steigmiller S; Reuter R; Felekyan S; Kudryavtsev V; Seidel CA; Gräber P
    Nat Struct Mol Biol; 2004 Feb; 11(2):135-41. PubMed ID: 14730350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.
    Deckers-Hebestreit G; Altendorf K
    Annu Rev Microbiol; 1996; 50():791-824. PubMed ID: 8905099
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ATP photosynthetic vesicles for light-driven bioprocesses.
    Hara KY; Suzuki R; Suzuki T; Yoshida M; Kino K
    Biotechnol Lett; 2011 Jun; 33(6):1133-8. PubMed ID: 21287230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic site nucleotide binding and hydrolysis in F1F0-ATP synthase.
    Löbau S; Weber J; Senior AE
    Biochemistry; 1998 Jul; 37(30):10846-53. PubMed ID: 9692975
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ATP-synthase of Rhodobacter capsulatus: coupling of proton flow through F0 to reactions in F1 under the ATP synthesis and slip conditions.
    Feniouk BA; Cherepanov DA; Junge W; Mulkidjanian AY
    FEBS Lett; 1999 Feb; 445(2-3):409-14. PubMed ID: 10094498
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sulfite stimulates the ATP hydrolysis activity of but not proton translocation by the ATP synthase of Rhodobacter capsulatus and interferes with its activation by delta muH+.
    Cappellini P; Turina P; Fregni V; Melandri BA
    Eur J Biochem; 1997 Sep; 248(2):496-506. PubMed ID: 9346308
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural biology: Toward the ATP synthase mechanism.
    Weber J
    Nat Chem Biol; 2010 Nov; 6(11):794-5. PubMed ID: 20956969
    [No Abstract]   [Full Text] [Related]  

  • 49. Purification and Reconstitution of Ilyobacter tartaricus ATP Synthase.
    Krasnoselska GO; Meier T
    Methods Mol Biol; 2018; 1805():51-71. PubMed ID: 29971712
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activation of the H(+)-ATP synthase in the photosynthetic bacterium Rhodobacter capsulatus.
    Turina P; Rumberg B; Melandri BA; Gräber P
    J Biol Chem; 1992 Jun; 267(16):11057-63. PubMed ID: 1534558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonequilibrium fluctuations of lipid membranes by the rotating motor protein F
    Almendro-Vedia VG; Natale P; Mell M; Bonneau S; Monroy F; Joubert F; López-Montero I
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11291-11296. PubMed ID: 29073046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP.
    Guihard G; Bénédetti H; Besnard M; Letellier L
    J Biol Chem; 1993 Aug; 268(24):17775-80. PubMed ID: 7688731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Membrane-bound adenosine triphosphatase of Escherichia coli. III. Effects of sodium azide on the enzyme functions.
    Kobayashi H; Maeda M; Anraku Y
    J Biochem; 1977 Apr; 81(4):1071-7. PubMed ID: 142083
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides.
    Laughlin TF; Ahmad Z
    Int J Biol Macromol; 2010 Apr; 46(3):367-74. PubMed ID: 20100509
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The b (arg36) contributes to efficient coupling in F(1)F (O) ATP synthase in Escherichia coli.
    Welch AK; Claggett SB; Cain BD
    J Bioenerg Biomembr; 2008 Feb; 40(1):1-8. PubMed ID: 18204891
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The lateral distance between a proton pump and ATP synthase determines the ATP-synthesis rate.
    Sjöholm J; Bergstrand J; Nilsson T; Šachl R; Ballmoos CV; Widengren J; Brzezinski P
    Sci Rep; 2017 Jun; 7(1):2926. PubMed ID: 28592883
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A more robust version of the Arginine 210-switched mutant in subunit a of the Escherichia coli ATP synthase.
    Bae L; Vik SB
    Biochim Biophys Acta; 2009 Sep; 1787(9):1129-34. PubMed ID: 19362069
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutation of the mitochrondrially encoded ATPase 6 gene modeled in the ATP synthase of Escherichia coli.
    Ogilvie I; Capaldi RA
    FEBS Lett; 1999 Jun; 453(1-2):179-82. PubMed ID: 10403398
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 31P-NMR saturation transfer studies of aerobic Escherichia coli cells.
    Mitsumori F; Rees D; Brindle KM; Radda GK; Campbell ID
    Biochim Biophys Acta; 1988 Apr; 969(2):185-93. PubMed ID: 2895671
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of progress curves. Rate law of pyruvate kinase type I from Escherichia coli.
    Markus M; Plesser T; Boiteux A; Hess B; Malcovati M
    Biochem J; 1980 Sep; 189(3):421-33. PubMed ID: 7011316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.