BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 18952103)

  • 1. Principal component analysis for protein folding dynamics.
    Maisuradze GG; Liwo A; Scheraga HA
    J Mol Biol; 2009 Jan; 385(1):312-29. PubMed ID: 18952103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
    Maisuradze GG; Senet P; Czaplewski C; Liwo A; Scheraga HA
    J Phys Chem A; 2010 Apr; 114(13):4471-85. PubMed ID: 20166738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.
    Maisuradze GG; Zhou R; Liwo A; Xiao Y; Scheraga HA
    J Mol Biol; 2012 Jul; 420(4-5):350-65. PubMed ID: 22560992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements.
    Zhou R; Maisuradze GG; Suñol D; Todorovski T; Macias MJ; Xiao Y; Scheraga HA; Czaplewski C; Liwo A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18243-8. PubMed ID: 25489078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local vs global motions in protein folding.
    Maisuradze GG; Liwo A; Senet P; Scheraga HA
    J Chem Theory Comput; 2013 Jul; 9(7):2907-2921. PubMed ID: 23914144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How adequate are one- and two-dimensional free energy landscapes for protein folding dynamics?
    Maisuradze GG; Liwo A; Scheraga HA
    Phys Rev Lett; 2009 Jun; 102(23):238102. PubMed ID: 19658975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding dynamics of proteins from denatured to native state: principal component analysis.
    Palazoglu A; Gursoy A; Arkun Y; Erman B
    J Comput Biol; 2004; 11(6):1149-68. PubMed ID: 15662203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding, misfolding, and amyloid protofibril formation of WW domain FBP28.
    Mu Y; Nordenskiöld L; Tam JP
    Biophys J; 2006 Jun; 90(11):3983-92. PubMed ID: 16533840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational states and folding pathways of peptides revealed by principal-independent component analyses.
    Nguyen PH
    Proteins; 2007 May; 67(3):579-92. PubMed ID: 17348012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation between free energy landscapes of proteins and dynamics.
    Maisuradze GG; Liwo A; Scheraga HA
    J Chem Theory Comput; 2010 Feb; 6(2):583-595. PubMed ID: 23620713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains.
    Liwo A; Khalili M; Scheraga HA
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2362-7. PubMed ID: 15677316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
    Nguyen PH
    Proteins; 2006 Dec; 65(4):898-913. PubMed ID: 17034036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies of folding of the B-domain of staphylococcal protein A with molecular dynamics and a united-residue (UNRES) model of polypeptide chains.
    Khalili M; Liwo A; Scheraga HA
    J Mol Biol; 2006 Jan; 355(3):536-47. PubMed ID: 16324712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy landscape of a small peptide revealed by dihedral angle principal component analysis.
    Mu Y; Nguyen PH; Stock G
    Proteins; 2005 Jan; 58(1):45-52. PubMed ID: 15521057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins.
    Liwo A; Khalili M; Czaplewski C; Kalinowski S; Ołdziej S; Wachucik K; Scheraga HA
    J Phys Chem B; 2007 Jan; 111(1):260-85. PubMed ID: 17201450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics with the united-residue model of polypeptide chains. II. Langevin and Berendsen-bath dynamics and tests on model alpha-helical systems.
    Khalili M; Liwo A; Jagielska A; Scheraga HA
    J Phys Chem B; 2005 Jul; 109(28):13798-810. PubMed ID: 16852728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulations of protein folding by targeted molecular dynamics.
    Ferrara P; Apostolakis J; Caflisch A
    Proteins; 2000 May; 39(3):252-60. PubMed ID: 10737947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained force field: general folding theory.
    Liwo A; He Y; Scheraga HA
    Phys Chem Chem Phys; 2011 Oct; 13(38):16890-901. PubMed ID: 21643583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The folding pathway of ubiquitin from all-atom molecular dynamics simulations.
    Marianayagam NJ; Jackson SE
    Biophys Chem; 2004 Oct; 111(2):159-71. PubMed ID: 15381313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.