These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 18952329)
1. Testing the resistance of single- and multi-walled carbon nanotubes to chemothermal oxidation used to isolate soots from environmental samples. Sobek A; Bucheli TD Environ Pollut; 2009 Apr; 157(4):1065-71. PubMed ID: 18952329 [TBL] [Abstract][Full Text] [Related]
2. Testing the resistance of fullerenes to chemothermal oxidation used to isolate soots from environmental samples. Flores-Cervantes DX; Bucheli TD Environ Pollut; 2011 Dec; 159(12):3793-6. PubMed ID: 21872974 [TBL] [Abstract][Full Text] [Related]
3. Microtrapping characteristics of single and multi-walled carbon nanotubes. Hussain CM; Saridara C; Mitra S J Chromatogr A; 2008 Mar; 1185(2):161-6. PubMed ID: 18282580 [TBL] [Abstract][Full Text] [Related]
4. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
5. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Sato Y; Yokoyama A; Shibata K; Akimoto Y; Ogino S; Nodasaka Y; Kohgo T; Tamura K; Akasaka T; Uo M; Motomiya K; Jeyadevan B; Ishiguro M; Hatakeyama R; Watari F; Tohji K Mol Biosyst; 2005 Jul; 1(2):176-82. PubMed ID: 16880981 [TBL] [Abstract][Full Text] [Related]
6. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Cang-Rong JT; Pastorin G Nanotechnology; 2009 Jun; 20(25):255102. PubMed ID: 19487802 [TBL] [Abstract][Full Text] [Related]
7. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Schierz A; Zänker H Environ Pollut; 2009 Apr; 157(4):1088-94. PubMed ID: 19010575 [TBL] [Abstract][Full Text] [Related]
8. The feasibility of isolation and detection of fullerenes and carbon nanotubes using the benzene polycarboxylic acid method. Ziolkowski LA; Druffel ER Mar Pollut Bull; 2009; 59(4-7):213-8. PubMed ID: 19464702 [TBL] [Abstract][Full Text] [Related]
9. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Chappell MA; George AJ; Dontsova KM; Porter BE; Price CL; Zhou P; Morikawa E; Kennedy AJ; Steevens JA Environ Pollut; 2009 Apr; 157(4):1081-7. PubMed ID: 19000646 [TBL] [Abstract][Full Text] [Related]
10. Asymmetrically charged carbon nanotubes by controlled functionalization. Peng Q; Qu L; Dai L; Park K; Vaia RA ACS Nano; 2008 Sep; 2(9):1833-40. PubMed ID: 19206422 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Han Y; Cao J; An Z; Chow JC; Watson JG; Jin Z; Fung K; Liu S Chemosphere; 2007 Sep; 69(4):526-33. PubMed ID: 17498774 [TBL] [Abstract][Full Text] [Related]
12. Modification of the dentin surface by using carbon nanotubes. Akasaka T; Nakata K; Uo M; Watari F Biomed Mater Eng; 2009; 19(2-3):179-85. PubMed ID: 19581712 [TBL] [Abstract][Full Text] [Related]
13. Purification of laser synthesized SWCNTs by different methods: a comparative study. Matlhoko L; Pillai SK; Ray SS; Augustyn WG; Moodley M J Nanosci Nanotechnol; 2008 Nov; 8(11):6023-30. PubMed ID: 19198341 [TBL] [Abstract][Full Text] [Related]
15. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256 [TBL] [Abstract][Full Text] [Related]
16. Polymer decoration on carbon nanotubes via physical vapor deposition. Li L; Li B; Yang G; Li CY Langmuir; 2007 Jul; 23(16):8522-5. PubMed ID: 17602575 [TBL] [Abstract][Full Text] [Related]
18. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Foldvari M; Bagonluri M Nanomedicine; 2008 Sep; 4(3):183-200. PubMed ID: 18550450 [TBL] [Abstract][Full Text] [Related]
19. A morphological investigation of soot produced by the detonation of munitions. Pantea D; Brochu S; Thiboutot S; Ampleman G; Scholz G Chemosphere; 2006 Oct; 65(5):821-31. PubMed ID: 16674994 [TBL] [Abstract][Full Text] [Related]
20. Optical spectroscopic studies of photochemically oxidized single-walled carbon nanotubes. Lee SH; Jung YC; Kim YA; Muramatsu H; Teshima K; Oishi S; Endo M Nanotechnology; 2009 Mar; 20(10):105708. PubMed ID: 19417536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]