BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 18952788)

  • 1. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa.
    Zegans ME; Wagner JC; Cady KC; Murphy DM; Hammond JH; O'Toole GA
    J Bacteriol; 2009 Jan; 191(1):210-9. PubMed ID: 18952788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins.
    Cady KC; O'Toole GA
    J Bacteriol; 2011 Jul; 193(14):3433-45. PubMed ID: 21398535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirements for Pseudomonas aeruginosa Type I-F CRISPR-Cas Adaptation Determined Using a Biofilm Enrichment Assay.
    Heussler GE; Miller JL; Price CE; Collins AJ; O'Toole GA
    J Bacteriol; 2016 Nov; 198(22):3080-3090. PubMed ID: 27573013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates.
    Cady KC; White AS; Hammond JH; Abendroth MD; Karthikeyan RS; Lalitha P; Zegans ME; O'Toole GA
    Microbiology (Reading); 2011 Feb; 157(Pt 2):430-7. PubMed ID: 21081758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DMS3-42: the secret to CRISPR-dependent biofilm inhibition in Pseudomonas aeruginosa.
    Palmer KL; Whiteley M
    J Bacteriol; 2011 Jul; 193(14):3431-2. PubMed ID: 21551309
    [No Abstract]   [Full Text] [Related]  

  • 7. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system.
    Bondy-Denomy J; Pawluk A; Maxwell KL; Davidson AR
    Nature; 2013 Jan; 493(7432):429-32. PubMed ID: 23242138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete genome sequences of two Pseudomonas aeruginosa temperate phages, MP29 and MP42, which lack the phage-host CRISPR interaction.
    Chung IY; Cho YH
    J Virol; 2012 Aug; 86(15):8336. PubMed ID: 22787268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature, by Controlling Growth Rate, Regulates CRISPR-Cas Activity in Pseudomonas aeruginosa.
    Høyland-Kroghsbo NM; Muñoz KA; Bassler BL
    mBio; 2018 Nov; 9(6):. PubMed ID: 30425154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages.
    Cady KC; Bondy-Denomy J; Heussler GE; Davidson AR; O'Toole GA
    J Bacteriol; 2012 Nov; 194(21):5728-38. PubMed ID: 22885297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas aeruginosa Interstrain Dynamics and Selection of Hyperbiofilm Mutants during a Chronic Infection.
    Gloag ES; Marshall CW; Snyder D; Lewin GR; Harris JS; Santos-Lopez A; Chaney SB; Whiteley M; Cooper VS; Wozniak DJ
    mBio; 2019 Aug; 10(4):. PubMed ID: 31409682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages.
    Essoh C; Blouin Y; Loukou G; Cablanmian A; Lathro S; Kutter E; Thien HV; Vergnaud G; Pourcel C
    PLoS One; 2013; 8(4):e60575. PubMed ID: 23637754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudolysogeny and sequential mutations build multiresistance to virulent bacteriophages in Pseudomonas aeruginosa.
    Latino L; Midoux C; Hauck Y; Vergnaud G; Pourcel C
    Microbiology (Reading); 2016 May; 162(5):748-763. PubMed ID: 26921273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel N4-Like Bacteriophage Isolated from a Wastewater Source in South India with Activity against Several Multidrug-Resistant Clinical Pseudomonas aeruginosa Isolates.
    Menon ND; Kumar MS; Satheesh Babu TG; Bose S; Vijayakumar G; Baswe M; Chatterjee M; D'Silva JR; Shetty K; Haripriyan J; Kumar A; Nair S; Somanath P; Nair BG; Nizet V; Kumar GB
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33441405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of DNA probes to analysis of bacteriophage distribution patterns in the environment.
    Ogunseitan OA; Sayler GS; Miller RV
    Appl Environ Microbiol; 1992 Jun; 58(6):2046-52. PubMed ID: 1622283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of CRISPR/cas system in the development of bacteriophage resistance.
    Szczepankowska A
    Adv Virus Res; 2012; 82():289-338. PubMed ID: 22420856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery.
    Vorontsova D; Datsenko KA; Medvedeva S; Bondy-Denomy J; Savitskaya EE; Pougach K; Logacheva M; Wiedenheft B; Davidson AR; Severinov K; Semenova E
    Nucleic Acids Res; 2015 Dec; 43(22):10848-60. PubMed ID: 26586803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel PCR detection of CRISPR/Cas systems in Pseudomonas aeruginosa and its correlation with antibiotic resistance.
    Soliman M; Said HS; El-Mowafy M; Barwa R
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7223-7234. PubMed ID: 36178514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modelling of CRISPR-Cas system effects on biofilm formation.
    Ali Q; Wahl LM
    J Biol Dyn; 2017 Aug; 11(sup2):264-284. PubMed ID: 28426329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of a bacteriophage and its potential to disrupt multi-drug resistant Pseudomonas aeruginosa biofilms.
    Yuan Y; Qu K; Tan D; Li X; Wang L; Cong C; Xiu Z; Xu Y
    Microb Pathog; 2019 Mar; 128():329-336. PubMed ID: 30682523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.