These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 18952860)
1. Replication of nonautonomous retroelements in soybean appears to be both recent and common. Wawrzynski A; Ashfield T; Chen NW; Mammadov J; Nguyen A; Podicheti R; Cannon SB; Thareau V; Ameline-Torregrosa C; Cannon E; Chacko B; Couloux A; Dalwani A; Denny R; Deshpande S; Egan AN; Glover N; Howell S; Ilut D; Lai H; Del Campo SM; Metcalf M; O'Bleness M; Pfeil BE; Ratnaparkhe MB; Samain S; Sanders I; Ségurens B; Sévignac M; Sherman-Broyles S; Tucker DM; Yi J; Doyle JJ; Geffroy V; Roe BA; Maroof MA; Young ND; Innes RW Plant Physiol; 2008 Dec; 148(4):1760-71. PubMed ID: 18952860 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006 [TBL] [Abstract][Full Text] [Related]
3. Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR Swapping in soybean. Du J; Tian Z; Bowen NJ; Schmutz J; Shoemaker RC; Ma J Plant Cell; 2010 Jan; 22(1):48-61. PubMed ID: 20081112 [TBL] [Abstract][Full Text] [Related]
4. Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Innes RW; Ameline-Torregrosa C; Ashfield T; Cannon E; Cannon SB; Chacko B; Chen NW; Couloux A; Dalwani A; Denny R; Deshpande S; Egan AN; Glover N; Hans CS; Howell S; Ilut D; Jackson S; Lai H; Mammadov J; Del Campo SM; Metcalf M; Nguyen A; O'Bleness M; Pfeil BE; Podicheti R; Ratnaparkhe MB; Samain S; Sanders I; Ségurens B; Sévignac M; Sherman-Broyles S; Thareau V; Tucker DM; Walling J; Wawrzynski A; Yi J; Doyle JJ; Geffroy V; Roe BA; Maroof MA; Young ND Plant Physiol; 2008 Dec; 148(4):1740-59. PubMed ID: 18842825 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. Gao L; McCarthy EM; Ganko EW; McDonald JF BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813 [TBL] [Abstract][Full Text] [Related]
6. Retrotranspositions in orthologous regions of closely related grass species. Du C; Swigonová Z; Messing J BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031 [TBL] [Abstract][Full Text] [Related]
7. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Ma J; Devos KM; Bennetzen JL Genome Res; 2004 May; 14(5):860-9. PubMed ID: 15078861 [TBL] [Abstract][Full Text] [Related]
8. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Vitte C; Panaud O Cytogenet Genome Res; 2005; 110(1-4):91-107. PubMed ID: 16093661 [TBL] [Abstract][Full Text] [Related]
9. Chromosomal distribution of soybean retrotransposon SORE-1 suggests its recent preferential insertion into euchromatic regions. Nakashima K; Abe J; Kanazawa A Chromosome Res; 2018 Sep; 26(3):199-210. PubMed ID: 29789973 [TBL] [Abstract][Full Text] [Related]
10. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch. Ji Y; DeWoody JA J Mol Evol; 2016 Jun; 82(6):251-63. PubMed ID: 27154235 [TBL] [Abstract][Full Text] [Related]
11. LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. Vitte C; Panaud O; Quesneville H BMC Genomics; 2007 Jul; 8():218. PubMed ID: 17617907 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of RNase LTR sequences of Ty1-copia retrotransposons in common bean (Phaseolus vulgaris L). Galindo LM; Gaitán-Solís E; Baccam P; Tohme J Genome; 2004 Feb; 47(1):84-95. PubMed ID: 15060605 [TBL] [Abstract][Full Text] [Related]
13. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. Baucom RS; Estill JC; Chaparro C; Upshaw N; Jogi A; Deragon JM; Westerman RP; Sanmiguel PJ; Bennetzen JL PLoS Genet; 2009 Nov; 5(11):e1000732. PubMed ID: 19936065 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional divergence of a 1-Mb duplicated region in the soybean (Glycine max) genome and comparison to an orthologous region from Phaseolus vulgaris. Lin JY; Stupar RM; Hans C; Hyten DL; Jackson SA Plant Cell; 2010 Aug; 22(8):2545-61. PubMed ID: 20729383 [TBL] [Abstract][Full Text] [Related]
15. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Zhang QJ; Gao LZ G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161 [TBL] [Abstract][Full Text] [Related]
16. Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Kalendar R; Vicient CM; Peleg O; Anamthawat-Jonsson K; Bolshoy A; Schulman AH Genetics; 2004 Mar; 166(3):1437-50. PubMed ID: 15082561 [TBL] [Abstract][Full Text] [Related]
17. Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders. Frahry MB; Sun C; Chong RA; Mueller RL J Mol Evol; 2015 Feb; 80(2):120-9. PubMed ID: 25608479 [TBL] [Abstract][Full Text] [Related]
18. Diaspora, a large family of Ty3-gypsy retrotransposons in Glycine max, is an envelope-less member of an endogenous plant retrovirus lineage. Yano ST; Panbehi B; Das A; Laten HM BMC Evol Biol; 2005 May; 5():30. PubMed ID: 15876351 [TBL] [Abstract][Full Text] [Related]
19. SIRE1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young. Laten HM; Havecker ER; Farmer LM; Voytas DF Mol Biol Evol; 2003 Aug; 20(8):1222-30. PubMed ID: 12777503 [TBL] [Abstract][Full Text] [Related]
20. The Cassandra retrotransposon landscape in sugar beet (Beta vulgaris) and related Amaranthaceae: recombination and re-shuffling lead to a high structural variability. Maiwald S; Weber B; Seibt KM; Schmidt T; Heitkam T Ann Bot; 2021 Jan; 127(1):91-109. PubMed ID: 33009553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]