These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18952868)

  • 41. Gene expression microarray analysis of heat stress in the soil invertebrate Folsomia candida.
    Nota B; van Straalen NM; Ylstra B; Roelofs D
    Insect Mol Biol; 2010 Jun; 19(3):315-22. PubMed ID: 20074298
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide screen for temperature-regulated genes of the obligate intracellular bacterium, Rickettsia typhi.
    Dreher-Lesnick SM; Ceraul SM; Rahman MS; Azad AF
    BMC Microbiol; 2008 Apr; 8():61. PubMed ID: 18412961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi.
    Walker DH; Yu XJ
    Ann N Y Acad Sci; 2005 Dec; 1063():13-25. PubMed ID: 16481486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptional response of Rickettsia conorii exposed to temperature variation and stress starvation.
    Rovery C; Renesto P; Crapoulet N; Matsumoto K; Parola P; Ogata H; Raoult D
    Res Microbiol; 2005 Mar; 156(2):211-8. PubMed ID: 15748986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exertional heat injury and gene expression changes: a DNA microarray analysis study.
    Sonna LA; Wenger CB; Flinn S; Sheldon HK; Sawka MN; Lilly CM
    J Appl Physiol (1985); 2004 May; 96(5):1943-53. PubMed ID: 14978005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape.
    Whitworth T; Popov VL; Yu XJ; Walker DH; Bouyer DH
    Infect Immun; 2005 Oct; 73(10):6668-73. PubMed ID: 16177343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches.
    Healy TM; Tymchuk WE; Osborne EJ; Schulte PM
    Physiol Genomics; 2010 Apr; 41(2):171-84. PubMed ID: 20103695
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover.
    Anderson KL; Roberts C; Disz T; Vonstein V; Hwang K; Overbeek R; Olson PD; Projan SJ; Dunman PM
    J Bacteriol; 2006 Oct; 188(19):6739-56. PubMed ID: 16980476
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics.
    Suzuki I; Simon WJ; Slabas AR
    J Exp Bot; 2006; 57(7):1573-8. PubMed ID: 16574748
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Global transcriptome analysis of the heat shock response of Bifidobacterium longum.
    Rezzonico E; Lariani S; Barretto C; Cuanoud G; Giliberti G; Delley M; Arigoni F; Pessi G
    FEMS Microbiol Lett; 2007 Jun; 271(1):136-45. PubMed ID: 17419761
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization and SNP variation analysis of a HSP70 gene from miiuy croaker and its expression as related to bacterial challenge and heat shock.
    Wei T; Sun Y; Shi G; Wang R; Xu T
    Fish Shellfish Immunol; 2012 Sep; 33(3):632-40. PubMed ID: 22750024
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genotypic comparison of five isolates of Rickettsia prowazekii by multilocus sequence typing.
    Ge H; Tong M; Jiang J; Dasch GA; Richards AL
    FEMS Microbiol Lett; 2007 Jun; 271(1):112-7. PubMed ID: 17419766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chlamydia trachomatis lacks an adaptive response to changes in carbon source availability.
    Nicholson TL; Chiu K; Stephens RS
    Infect Immun; 2004 Jul; 72(7):4286-9. PubMed ID: 15213176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA profiling in host-pathogen interactions.
    Waddell SJ; Butcher PD; Stoker NG
    Curr Opin Microbiol; 2007 Jun; 10(3):297-302. PubMed ID: 17574903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genotyping Rickettsia prowazekii isolates.
    Zhu Y; Medina-Sanchez A; Bouyer D; Walker DH; Yu XJ
    Emerg Infect Dis; 2008 Aug; 14(8):1300-2. PubMed ID: 18680662
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Did the mitochondrial processing peptidase evolve from a eubacterial regulator of gene expression?
    Bolhuis A; Koetje E; Dubois JY; Vehmaanperä J; Venema G; Bron S; van Dijl JM
    Mol Biol Evol; 2000 Jan; 17(1):198-201. PubMed ID: 10666719
    [No Abstract]   [Full Text] [Related]  

  • 57. Early events in the interaction of the obligate intracytoplasmic parasite, Rickettsia prowazekii, with eucaryotic cells: entry and lysis.
    Winkler HH
    Ann Inst Pasteur Microbiol (1985); 1986; 137A(3):333-6. PubMed ID: 3122641
    [No Abstract]   [Full Text] [Related]  

  • 58. Molecular biology of rickettsiae.
    Winkler HH
    Eur J Epidemiol; 1991 May; 7(3):207-12. PubMed ID: 1909243
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative transcriptomic analysis of Rickettsia conorii during in vitro infection of human and tick host cells.
    Narra HP; Sahni A; Alsing J; Schroeder CLC; Golovko G; Nia AM; Fofanov Y; Khanipov K; Sahni SK
    BMC Genomics; 2020 Sep; 21(1):665. PubMed ID: 32977742
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proteomic analysis of Rickettsia akari proposes a 44 kDa-OMP as a potential biomarker for Rickettsialpox diagnosis.
    Csicsay F; Flores-Ramirez G; Zuñiga-Navarrete F; Bartošová M; Fučíková A; Pajer P; Dresler J; Škultéty Ľ; Quevedo-Diaz M
    BMC Microbiol; 2020 Jul; 20(1):200. PubMed ID: 32640994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.