These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 18952914)

  • 1. In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic.
    Morgan JI; Dubra A; Wolfe R; Merigan WH; Williams DR
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1350-9. PubMed ID: 18952914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Retinal Pigment Epithelium: In Vivo Cell Morphometry, Multispectral Autofluorescence, and Relationship to Cone Mosaic.
    Granger CE; Yang Q; Song H; Saito K; Nozato K; Latchney LR; Leonard BT; Chung MM; Williams DR; Rossi EA
    Invest Ophthalmol Vis Sci; 2018 Dec; 59(15):5705-5716. PubMed ID: 30513531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium.
    Morgan JI; Hunter JJ; Masella B; Wolfe R; Gray DC; Merigan WH; Delori FC; Williams DR
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3715-29. PubMed ID: 18408191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy.
    Tam J; Liu J; Dubra A; Fariss R
    Invest Ophthalmol Vis Sci; 2016 Aug; 57(10):4376-84. PubMed ID: 27564519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina.
    Liu Z; Kocaoglu OP; Miller DT
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT533-43. PubMed ID: 27472277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia.
    Morgan JI; Han G; Klinman E; Maguire WM; Chung DC; Maguire AM; Bennett J
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6381-97. PubMed ID: 25190651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reduction of retinal autofluorescence caused by light exposure.
    Morgan JI; Hunter JJ; Merigan WH; Williams DR
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):6015-22. PubMed ID: 19628734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multispectral label-free
    Kunala K; Tang JAH; Parkins K; Hunter JJ
    J Biomed Opt; 2024 Jun; 29(Suppl 2):S22707. PubMed ID: 38962492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye.
    Sharma R; Williams DR; Palczewska G; Palczewski K; Hunter JJ
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):632-46. PubMed ID: 26903224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease.
    Roorda A; Zhang Y; Duncan JL
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2297-303. PubMed ID: 17460294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Resolution Adaptive Optics in Vivo Autofluorescence Imaging in Stargardt Disease.
    Song H; Rossi EA; Yang Q; Granger CE; Latchney LR; Chung MM
    JAMA Ophthalmol; 2019 Jun; 137(6):603-609. PubMed ID: 30896765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells.
    Gray DC; Merigan W; Wolfing JI; Gee BP; Porter J; Dubra A; Twietmeyer TH; Ahamd K; Tumbar R; Reinholz F; Williams DR
    Opt Express; 2006 Aug; 14(16):7144-58. PubMed ID: 19529085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence adaptive optics scanning laser ophthalmoscope for detection of reduced cones and hypoautofluorescent spots in fundus albipunctatus.
    Song H; Latchney L; Williams D; Chung M
    JAMA Ophthalmol; 2014 Sep; 132(9):1099-104. PubMed ID: 24922193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near infrared autofluorescence imaging of retinal pigmented epithelial cells using 663 nm excitation.
    Vienola KV; Zhang M; Snyder VC; Dansingani KK; Sahel JA; Rossi EA
    Eye (Lond); 2022 Oct; 36(10):1878-1883. PubMed ID: 34462582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones.
    Sharma R; Schwarz C; Williams DR; Palczewska G; Palczewski K; Hunter JJ
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):647-57. PubMed ID: 26903225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated segmentation of retinal pigment epithelium cells in fluorescence adaptive optics images.
    Rangel-Fonseca P; Gómez-Vieyra A; Malacara-Hernández D; Wilson MC; Williams DR; Rossi EA
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2595-604. PubMed ID: 24323021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near Infrared Autofluorescence Lifetime Imaging of Human Retinal Pigment Epithelium Using Adaptive Optics Scanning Light Ophthalmoscopy.
    Kunala K; Tang JAH; Bowles Johnson KE; Huynh KT; Parkins K; Kim HJ; Yang Q; Sparrow JR; Hunter JJ
    Invest Ophthalmol Vis Sci; 2024 May; 65(5):27. PubMed ID: 38758638
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Grieve K; Gofas-Salas E; Ferguson RD; Sahel JA; Paques M; Rossi EA
    Biomed Opt Express; 2018 Dec; 9(12):5946-5961. PubMed ID: 31065405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal Imaging of Torpedo Maculopathy With Fluorescence Adaptive Optics Imaging of Individual Retinal Pigmented Epithelial Cells.
    Vienola KV; Dansingani KK; Eller AW; Martel JN; Snyder VC; Rossi EA
    Front Med (Lausanne); 2021; 8():769308. PubMed ID: 34957148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online autofluorescence measurements during selective RPE laser treatment.
    Framme C; Schüle G; Roider J; Birngruber R; Brinkmann R
    Graefes Arch Clin Exp Ophthalmol; 2004 Oct; 242(10):863-9. PubMed ID: 15221301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.