These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 18952981)
1. High binding affinity of electronegative LDL to human aortic proteoglycans depends on its aggregation level. Bancells C; Benítez S; Jauhiainen M; Ordóñez-Llanos J; Kovanen PT; Villegas S; Sánchez-Quesada JL; O O Rni K J Lipid Res; 2009 Mar; 50(3):446-455. PubMed ID: 18952981 [TBL] [Abstract][Full Text] [Related]
2. Sphingomyelinase induces aggregation and fusion, but phospholipase A2 only aggregation, of low density lipoprotein (LDL) particles. Two distinct mechanisms leading to increased binding strength of LDL to human aortic proteoglycans. Oörni K; Hakala JK; Annila A; Ala-Korpela M; Kovanen PT J Biol Chem; 1998 Oct; 273(44):29127-34. PubMed ID: 9786921 [TBL] [Abstract][Full Text] [Related]
3. Macrophage-released proteoglycans enhance LDL aggregation: studies in aorta from apolipoprotein E-deficient mice. Maor I; Hayek T; Hirsh M; Iancu TC; Aviram M Atherosclerosis; 2000 May; 150(1):91-101. PubMed ID: 10781639 [TBL] [Abstract][Full Text] [Related]
4. Acidity and lipolysis by group V secreted phospholipase A(2) strongly increase the binding of apoB-100-containing lipoproteins to human aortic proteoglycans. Lähdesmäki K; Öörni K; Alanne-Kinnunen M; Jauhiainen M; Hurt-Camejo E; Kovanen PT Biochim Biophys Acta; 2012 Feb; 1821(2):257-67. PubMed ID: 22041135 [TBL] [Abstract][Full Text] [Related]
5. Sphingomyelinase induces aggregation and fusion of small very low-density lipoprotein and intermediate-density lipoprotein particles and increases their retention to human arterial proteoglycans. Oörni K; Posio P; Ala-Korpela M; Jauhiainen M; Kovanen PT Arterioscler Thromb Vasc Biol; 2005 Aug; 25(8):1678-83. PubMed ID: 15879301 [TBL] [Abstract][Full Text] [Related]
6. Immunochemical analysis of the electronegative LDL subfraction shows that abnormal N-terminal apolipoprotein B conformation is involved in increased binding to proteoglycans. Bancells C; Benítez S; Ordóñez-Llanos J; Öörni K; Kovanen PT; Milne RW; Sánchez-Quesada JL J Biol Chem; 2011 Jan; 286(2):1125-33. PubMed ID: 21078674 [TBL] [Abstract][Full Text] [Related]
7. PDGF beta-receptor kinase activity and ERK1/2 mediate glycosaminoglycan elongation on biglycan and increases binding to LDL. Getachew R; Ballinger ML; Burch ML; Reid JJ; Khachigian LM; Wight TN; Little PJ; Osman N Endocrinology; 2010 Sep; 151(9):4356-67. PubMed ID: 20610572 [TBL] [Abstract][Full Text] [Related]
8. ApoC-III content of apoB-containing lipoproteins is associated with binding to the vascular proteoglycan biglycan. Olin-Lewis K; Krauss RM; La Belle M; Blanche PJ; Barrett PH; Wight TN; Chait A J Lipid Res; 2002 Nov; 43(11):1969-77. PubMed ID: 12401896 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of a proteoglycan variant from human aorta exhibiting a marked affinity for low density lipoprotein and demonstration of its enhanced expression in atherosclerotic plaques. Vijayagopal P; Figueroa JE; Fontenot JD; Glancy DL Atherosclerosis; 1996 Dec; 127(2):195-203. PubMed ID: 9125309 [TBL] [Abstract][Full Text] [Related]
11. Phospholipase A(2) modification of low density lipoproteins forms small high density particles with increased affinity for proteoglycans and glycosaminoglycans. Sartipy P; Camejo G; Svensson L; Hurt-Camejo E J Biol Chem; 1999 Sep; 274(36):25913-20. PubMed ID: 10464335 [TBL] [Abstract][Full Text] [Related]
12. Proteoglycans from pig aorta. Comparative study of their interactions with lipoproteins. Wegrowski J; Moczar M; Robert L Biochem J; 1986 May; 235(3):823-31. PubMed ID: 3753448 [TBL] [Abstract][Full Text] [Related]
13. Electronegative low-density lipoprotein. A link between apolipoprotein B misfolding, lipoprotein aggregation and proteoglycan binding. Sánchez-Quesada JL; Villegas S; Ordóñez-Llanos J Curr Opin Lipidol; 2012 Oct; 23(5):479-86. PubMed ID: 22964994 [TBL] [Abstract][Full Text] [Related]
14. Decrease in pH strongly enhances binding of native, proteolyzed, lipolyzed, and oxidized low density lipoprotein particles to human aortic proteoglycans. Sneck M; Kovanen PT; Oörni K J Biol Chem; 2005 Nov; 280(45):37449-54. PubMed ID: 16147996 [TBL] [Abstract][Full Text] [Related]
15. Lipolysis of LDL by human secretory phospholipase A(2) induces particle fusion and enhances the retention of LDL to human aortic proteoglycans. Hakala JK; Oörni K; Pentikäinen MO; Hurt-Camejo E; Kovanen PT Arterioscler Thromb Vasc Biol; 2001 Jun; 21(6):1053-8. PubMed ID: 11397719 [TBL] [Abstract][Full Text] [Related]
16. Human monocyte-derived macrophages secrete two forms of proteoglycan-macrophage colony-stimulating factor that differ in their ability to bind low density lipoproteins. Chang MY; Olin KL; Tsoi C; Wight TN; Chait A J Biol Chem; 1998 Jun; 273(26):15985-92. PubMed ID: 9632647 [TBL] [Abstract][Full Text] [Related]
17. A proteomic study of the apolipoproteins in LDL subclasses in patients with the metabolic syndrome and type 2 diabetes. Davidsson P; Hulthe J; Fagerberg B; Olsson BM; Hallberg C; Dahllöf B; Camejo G J Lipid Res; 2005 Sep; 46(9):1999-2006. PubMed ID: 15995172 [TBL] [Abstract][Full Text] [Related]
18. Interaction between fibronectin, proteoglycans and lipoproteins. Labat-Robert J; Gruber E; Bihari-Varga M Int J Biol Macromol; 1990 Feb; 12(1):50-4. PubMed ID: 2083241 [TBL] [Abstract][Full Text] [Related]
19. Proteolysis and fusion of low density lipoprotein particles strengthen their binding to human aortic proteoglycans. Paananen K; Saarinen J; Annila A; Kovanen PT J Biol Chem; 1995 May; 270(20):12257-62. PubMed ID: 7744877 [TBL] [Abstract][Full Text] [Related]
20. Lipoprotein lipase-enhanced binding of human triglyceride-rich lipoproteins to heparan sulfate: modulation by apolipoprotein E and apolipoprotein C. van Barlingen HH; de Jong H; Erkelens DW; de Bruin TW J Lipid Res; 1996 Apr; 37(4):754-63. PubMed ID: 8732775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]