These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Injury to the arterial wall of rabbits produces proteoglycan variants with enhanced low-density lipoprotein-binding property. Srinivasan SR; Xu JH; Vijayagopal P; Radhakrishnamurthy B; Berenson GS Biochim Biophys Acta; 1993 Jun; 1168(2):158-66. PubMed ID: 8504150 [TBL] [Abstract][Full Text] [Related]
23. ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Hiukka A; Ståhlman M; Pettersson C; Levin M; Adiels M; Teneberg S; Leinonen ES; Hultén LM; Wiklund O; Oresic M; Olofsson SO; Taskinen MR; Ekroos K; Borén J Diabetes; 2009 Sep; 58(9):2018-26. PubMed ID: 19502413 [TBL] [Abstract][Full Text] [Related]
24. Oxidation of low density lipoprotein particles decreases their ability to bind to human aortic proteoglycans. Dependence on oxidative modification of the lysine residues. Oörni K; Pentikäinen MO; Annila A; Kovanen PT J Biol Chem; 1997 Aug; 272(34):21303-11. PubMed ID: 9261142 [TBL] [Abstract][Full Text] [Related]
25. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Camejo G; Hurt-Camejo E; Wiklund O; Bondjers G Atherosclerosis; 1998 Aug; 139(2):205-22. PubMed ID: 9712326 [TBL] [Abstract][Full Text] [Related]
26. Serum amyloid A, but not C-reactive protein, stimulates vascular proteoglycan synthesis in a pro-atherogenic manner. Wilson PG; Thompson JC; Webb NR; de Beer FC; King VL; Tannock LR Am J Pathol; 2008 Dec; 173(6):1902-10. PubMed ID: 18974302 [TBL] [Abstract][Full Text] [Related]
27. The binding of human aortic glycosaminoglycans and proteoglycans to plasma low density lipoproteins. Mourão PA; Bracamonte CA Atherosclerosis; 1984 Feb; 50(2):133-46. PubMed ID: 6712767 [TBL] [Abstract][Full Text] [Related]
28. A novel assay to measure low-density lipoproteins binding to proteoglycans. Geh EN; Swertfeger DK; Sexmith H; Heink A; Tarapore P; Melchior JT; Davidson WS; Shah AS PLoS One; 2024; 19(1):e0291632. PubMed ID: 38295021 [TBL] [Abstract][Full Text] [Related]
29. Binding of human phospholipase A2 type II to proteoglycans. Differential effect of glycosaminoglycans on enzyme activity. Sartipy P; Johansen B; Camejo G; Rosengren B; Bondjers G; Hurt-Camejo E J Biol Chem; 1996 Oct; 271(42):26307-14. PubMed ID: 8824283 [TBL] [Abstract][Full Text] [Related]
30. Phospholipase A2 type II binds to extracellular matrix biglycan: modulation of its activity on LDL by colocalization in glycosaminoglycan matrixes. Sartipy P; Bondjers G; Hurt-Camejo E Arterioscler Thromb Vasc Biol; 1998 Dec; 18(12):1934-41. PubMed ID: 9848887 [TBL] [Abstract][Full Text] [Related]
31. Electronegative low-density lipoprotein: origin and impact on health and disease. Mello AP; da Silva IT; Abdalla DS; Damasceno NR Atherosclerosis; 2011 Apr; 215(2):257-65. PubMed ID: 21292266 [TBL] [Abstract][Full Text] [Related]
32. Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation. Tabas I; Li Y; Brocia RW; Xu SW; Swenson TL; Williams KJ J Biol Chem; 1993 Sep; 268(27):20419-32. PubMed ID: 8376399 [TBL] [Abstract][Full Text] [Related]
33. The NH2-terminal region of apolipoprotein B is sufficient for lipoprotein association with glycosaminoglycans. Goldberg IJ; Wagner WD; Pang L; Paka L; Curtiss LK; DeLozier JA; Shelness GS; Young CS; Pillarisetti S J Biol Chem; 1998 Dec; 273(52):35355-61. PubMed ID: 9857078 [TBL] [Abstract][Full Text] [Related]
34. Interaction of lipoprotein Lp(a) and low density lipoprotein with glycosaminoglycans from human aorta. Bihari-Varga M; Gruber E; Rotheneder M; Zechner R; Kostner GM Arteriosclerosis; 1988; 8(6):851-7. PubMed ID: 2973783 [TBL] [Abstract][Full Text] [Related]
35. Identification of Apo B-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans. Camejo G; Olofsson SO; Lopez F; Carlsson P; Bondjers G Arteriosclerosis; 1988; 8(4):368-77. PubMed ID: 3395272 [TBL] [Abstract][Full Text] [Related]
36. [Study of the interaction between plasma proteoglycans and LDL by means of fluorescence spectroscopy]. Siddi F; Senes A; Coinu R; Formato M; Cherchi GM Boll Soc Ital Biol Sper; 1992 Nov; 68(11):655-61. PubMed ID: 1297360 [TBL] [Abstract][Full Text] [Related]
37. Macrophage released proteoglycans are involved in cell-mediated aggregation of LDL. Maor I; Aviram M Atherosclerosis; 1999 Jan; 142(1):57-66. PubMed ID: 9920506 [TBL] [Abstract][Full Text] [Related]
38. Structural and functional modifications of human aorta proteoglycans in atherosclerosis. Cherchi GM; Coinu R; Demuro P; Formato M; Sanna G; Tidore M; Tira ME; De Luca G Matrix; 1990 Dec; 10(6):362-72. PubMed ID: 2084515 [TBL] [Abstract][Full Text] [Related]
39. The heparin-binding proteins apolipoprotein E and lipoprotein lipase enhance cellular proteoglycan production. Obunike JC; Pillarisetti S; Paka L; Kako Y; Butteri MJ; Ho YY; Wagner WD; Yamada N; Mazzone T; Deckelbaum RJ; Goldberg IJ Arterioscler Thromb Vasc Biol; 2000 Jan; 20(1):111-8. PubMed ID: 10634807 [TBL] [Abstract][Full Text] [Related]