BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18953043)

  • 1. Positional distribution of human transcription factor binding sites.
    Koudritsky M; Domany E
    Nucleic Acids Res; 2008 Dec; 36(21):6795-805. PubMed ID: 18953043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positional distribution of transcription factor binding sites in Arabidopsis thaliana.
    Yu CP; Lin JJ; Li WH
    Sci Rep; 2016 Apr; 6():25164. PubMed ID: 27117388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes.
    Polak P; Domany E
    BMC Genomics; 2006 Jun; 7():133. PubMed ID: 16740159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative avidity, specificity, and sensitivity of transcription factor-DNA binding in genome-scale experiments.
    Kuznetsov VA
    Methods Mol Biol; 2009; 563():15-50. PubMed ID: 19597778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.
    Li W; Meyer CA; Liu XS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.
    Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL
    BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide-scale analysis of human functional transcription factor binding reveals a strong bias towards the transcription start site.
    Tabach Y; Brosh R; Buganim Y; Reiner A; Zuk O; Yitzhaky A; Koudritsky M; Rotter V; Domany E
    PLoS One; 2007 Aug; 2(8):e807. PubMed ID: 17726537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics tools for modeling transcription factor target genes and epigenetic changes.
    Davuluri RV
    Methods Mol Biol; 2007; 408():129-51. PubMed ID: 18314581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm.
    Zhu Z; Pilpel Y; Church GM
    J Mol Biol; 2002 Apr; 318(1):71-81. PubMed ID: 12054769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells.
    Takayama K; Tsutsumi S; Katayama S; Okayama T; Horie-Inoue K; Ikeda K; Urano T; Kawazu C; Hasegawa A; Ikeo K; Gojyobori T; Ouchi Y; Hayashizaki Y; Aburatani H; Inoue S
    Oncogene; 2011 Feb; 30(5):619-30. PubMed ID: 20890304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel strategy to search conserved transcription factor binding sites among coexpressing genes in human.
    Hatanaka Y; Nagasaki M; Yamaguchi R; Obayashi T; Numata K; Fujita A; Shimamura T; Tamada Y; Imoto S; Kinoshita K; Nakai K; Miyano S
    Genome Inform; 2008; 20():212-21. PubMed ID: 19425135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer and statistical analysis of transcription factor binding and chromatin modifications by ChIP-seq data in embryonic stem cell.
    Orlov Y; Xu H; Afonnikov D; Lim B; Heng JC; Yuan P; Chen M; Yan J; Clarke N; Orlova N; Huss M; Gunbin K; Podkolodnyy N; Ng HH
    J Integr Bioinform; 2012 Sep; 9(2):211. PubMed ID: 22987856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MPromDb: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-chip experimental data.
    Sun H; Palaniswamy SK; Pohar TT; Jin VX; Huang TH; Davuluri RV
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D98-103. PubMed ID: 16381984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide prediction and analysis of function-specific transcription factor binding sites.
    Long F; Liu H; Hahn C; Sumazin P; Zhang MQ; Zilberstein A
    In Silico Biol; 2004; 4(4):395-410. PubMed ID: 15506990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of factors regulating gene expression in liver.
    Teufel A; Weinmann A; Krupp M; Budinger M; Galle PR
    Gene; 2007 Mar; 389(2):114-21. PubMed ID: 17174484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unusal distribution of 6-nt sequences near the transcription start site.
    Mitra CK; Milanesi L
    J Integr Bioinform; 2008 Aug; 5(2):. PubMed ID: 20134067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering of DNA sequences in human promoters.
    FitzGerald PC; Shlyakhtenko A; Mir AA; Vinson C
    Genome Res; 2004 Aug; 14(8):1562-74. PubMed ID: 15256515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell- and stage-specific chromatin structure across the Complement receptor 2 (CR2/CD21) promoter coincide with CBF1 and C/EBP-beta binding in B cells.
    Cruickshank MN; Fenwick E; Karimi M; Abraham LJ; Ulgiati D
    Mol Immunol; 2009 Aug; 46(13):2613-22. PubMed ID: 19487031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.