These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18953424)

  • 1. The μPIVOT: an integrated particle image velocimeter and optical tweezers instrument for microenvironment investigations.
    Nève N; Lingwood JK; Zimmerman J; Kohles SS; Tretheway DC
    Meas Sci Technol; 2008; 19(9):95403. PubMed ID: 18953424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers.
    Nève N; Kohles SS; Winn SR; Tretheway DC
    Cell Mol Bioeng; 2010 Sep; 3(3):213-228. PubMed ID: 20824110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical stress analysis of microfluidic environments designed for isolated biological cell investigations.
    Kohles SS; Nève N; Zimmerman JD; Tretheway DC
    J Biomech Eng; 2009 Dec; 131(12):121006. PubMed ID: 20524729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of external forces on discrete motion within holographic optical tweezers.
    Eriksson E; Keen S; Leach J; Goksör M; Padgett MJ
    Opt Express; 2007 Dec; 15(26):18268-74. PubMed ID: 19551124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy.
    Pirbodaghi T; Vigolo D; Akbari S; deMello A
    Lab Chip; 2015 May; 15(9):2140-4. PubMed ID: 25812165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-induced heating in optical traps.
    Peterman EJ; Gittes F; Schmidt CF
    Biophys J; 2003 Feb; 84(2 Pt 1):1308-16. PubMed ID: 12547811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compact holographic optical tweezers instrument.
    Gibson GM; Bowman RW; Linnenberger A; Dienerowitz M; Phillips DB; Carberry DM; Miles MJ; Padgett MJ
    Rev Sci Instrum; 2012 Nov; 83(11):113107. PubMed ID: 23206051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device.
    Son M; Choi S; Ko KH; Kim MH; Lee SY; Key J; Yoon YR; Park IS; Lee SW
    Langmuir; 2016 Jan; 32(3):922-7. PubMed ID: 26734855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer adsorption onto a micro-sphere from optical tweezers electrophoresis.
    van Heiningen JA; Hill RJ
    Lab Chip; 2011 Jan; 11(1):152-62. PubMed ID: 20957244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of optical trapping force gradient on polystyrene microspheres using a carbon nanotube mechanical resonator.
    Yasuda M; Takei K; Arie T; Akita S
    Sci Rep; 2017 Jun; 7(1):2825. PubMed ID: 28588196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip.
    Kim J; Shin JH
    Sci Rep; 2016 Sep; 6():33842. PubMed ID: 27653191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer.
    Ndukaife JC; Kildishev AV; Nnanna AG; Shalaev VM; Wereley ST; Boltasseva A
    Nat Nanotechnol; 2016 Jan; 11(1):53-9. PubMed ID: 26524398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward optical-tweezers-based force microscopy for airborne microparticles.
    Power RM; Burnham DR; Reid JP
    Appl Opt; 2014 Dec; 53(36):8522-34. PubMed ID: 25608202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophoretic velocimetry for colloid characterization and separation in a cross-flow setup.
    Helmbrecht C; Niessner R; Haisch C
    Anal Chem; 2007 Sep; 79(18):7097-103. PubMed ID: 17705450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic flow measurements with optically trapped microprobes.
    Nemet BA; Cronin-Golomb M
    Opt Lett; 2002 Aug; 27(15):1357-9. PubMed ID: 18026449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers.
    Xiao G; Kuang T; Luo B; Xiong W; Han X; Chen X; Luo H
    Opt Express; 2019 Dec; 27(25):36653-36661. PubMed ID: 31873439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escape forces and trajectories in optical tweezers and their effect on calibration.
    Bui AA; Stilgoe AB; Khatibzadeh N; Nieminen TA; Berns MW; Rubinsztein-Dunlop H
    Opt Express; 2015 Sep; 23(19):24317-30. PubMed ID: 26406637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-propelled round-trip motion of Janus particles in static line optical tweezers.
    Liu J; Guo HL; Li ZY
    Nanoscale; 2016 Dec; 8(47):19894-19900. PubMed ID: 27878196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.