BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1895380)

  • 1. Critical chemical features in trans-acting-responsive RNA are required for interaction with human immunodeficiency virus type 1 Tat protein.
    Sumner-Smith M; Roy S; Barnett R; Reid LS; Kuperman R; Delling U; Sonenberg N
    J Virol; 1991 Oct; 65(10):5196-202. PubMed ID: 1895380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sequence and structure of the 3' arm of the first stem-loop of the human immunodeficiency virus type 2 trans-activation responsive region mediate Tat-2 transactivation.
    Browning C; Hilfinger JM; Rainier S; Lin V; Hedderwick S; Smith M; Markovitz DM
    J Virol; 1997 Oct; 71(10):8048-55. PubMed ID: 9311903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TAR RNA loop: a scaffold for the assembly of a regulatory switch in HIV replication.
    Richter S; Ping YH; Rana TM
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):7928-33. PubMed ID: 12048247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 1.3-A resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation.
    Ippolito JA; Steitz TA
    Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9819-24. PubMed ID: 9707559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring tat peptide binding to TAR RNA by solid-state 31P-19F REDOR NMR.
    Olsen GL; Edwards TE; Deka P; Varani G; Sigurdsson ST; Drobny GP
    Nucleic Acids Res; 2005; 33(11):3447-54. PubMed ID: 15961729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of 5'-terminal TAR structure in human immunodeficiency virus-1 mRNA by eukaryotic translation initiation factor 2.
    Ben-Asouli Y; Banai Y; Hauser H; Kaempfer R
    Nucleic Acids Res; 2000 Feb; 28(4):1011-8. PubMed ID: 10648795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The HIV-1 Integrase C-Terminal Domain Induces TAR RNA Structural Changes Promoting Tat Binding.
    Rocchi C; Louvat C; Miele AE; Batisse J; Guillon C; Ballut L; Lener D; Negroni M; Ruff M; Gouet P; Fiorini F
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of N-acetylation and N-methylation of lysine residue of Tat peptide on its interaction with HIV-1 TAR RNA.
    Kumar S; Maiti S
    PLoS One; 2013; 8(10):e77595. PubMed ID: 24147034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native Top-Down Mass Spectrometry of TAR RNA in Complexes with a Wild-Type tat Peptide for Binding Site Mapping.
    Schneeberger EM; Breuker K
    Angew Chem Int Ed Engl; 2017 Jan; 56(5):1254-1258. PubMed ID: 28000363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional model of human TIP30, a coactivator for HIV-1 Tat-activated transcription, and CC3, a protein associated with metastasis suppression.
    Baker ME; Yan L; Pear MR
    Cell Mol Life Sci; 2000 May; 57(5):851-8. PubMed ID: 10892349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA's Dynamic Conformational Selection and Entropic Allosteric Mechanism in Controlling Cascade Protein Binding Events.
    Chakraborty A; Samant D; Sarkar R; Sangeet S; Prusty S; Roy S
    J Phys Chem Lett; 2024 Jun; 15(23):6115-6125. PubMed ID: 38830201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced intercalation-induced light-up peptides as fluorogenic indicators for the HIV-1 TAR RNA-ligand assay.
    Lee ETT; Sato Y; Ujuagu AF; Nishizawa S
    Analyst; 2024 Jun; ():. PubMed ID: 38860915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics Insights on Viral Gene Expression Transactivation: From HIV-1 to SARS-CoV-2.
    Patarca R; Haseltine WA
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-crystal structures of HIV TAR RNA bound to lab-evolved proteins show key roles for arginine relevant to the design of cyclic peptide TAR inhibitors.
    Chavali SS; Mali SM; Jenkins JL; Fasan R; Wedekind JE
    J Biol Chem; 2020 Dec; 295(49):16470-16486. PubMed ID: 33051202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the length of poly-pyrimidine bulges broadens RNA conformational ensembles with minimal impact on stacking energetics.
    Merriman DK; Yuan J; Shi H; Majumdar A; Herschlag D; Al-Hashimi HM
    RNA; 2018 Oct; 24(10):1363-1376. PubMed ID: 30012568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of the 5'-terminal hairpin of the 7SK small nuclear RNA.
    Bourbigot S; Dock-Bregeon AC; Eberling P; Coutant J; Kieffer B; Lebars I
    RNA; 2016 Dec; 22(12):1844-1858. PubMed ID: 27852926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of protein side chains with RNA defined with REDOR solid state NMR.
    Huang W; Varani G; Drobny GP
    J Biomol NMR; 2011 Nov; 51(3):347-56. PubMed ID: 21947838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C/15N-19F intermolecular REDOR NMR study of the interaction of TAR RNA with Tat peptides.
    Huang W; Varani G; Drobny GP
    J Am Chem Soc; 2010 Dec; 132(50):17643-5. PubMed ID: 21105680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat.
    Muniz L; Egloff S; Ughy B; Jády BE; Kiss T
    PLoS Pathog; 2010 Oct; 6(10):e1001152. PubMed ID: 20976203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iRED analysis of TAR RNA reveals motional coupling, long-range correlations, and a dynamical hinge.
    Musselman C; Al-Hashimi HM; Andricioaei I
    Biophys J; 2007 Jul; 93(2):411-22. PubMed ID: 17449677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.