These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18954126)

  • 1. Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays.
    Goldthorpe IA; Marshall AF; McIntyre PC
    Nano Lett; 2008 Nov; 8(11):4081-6. PubMed ID: 18954126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures.
    Lin YC; Kim D; Li Z; Nguyen BM; Li N; Zhang S; Yoo J
    Nanoscale; 2017 Jan; 9(3):1213-1220. PubMed ID: 28050613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires.
    Dayeh SA; Tang W; Boioli F; Kavanagh KL; Zheng H; Wang J; Mack NH; Swadener G; Huang JY; Miglio L; Tu KN; Picraux ST
    Nano Lett; 2013 May; 13(5):1869-76. PubMed ID: 23030346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibiting strain-induced surface roughening: dislocation-free Ge/Si and Ge/SiGe core-shell nanowires.
    Goldthorpe IA; Marshall AF; McIntyre PC
    Nano Lett; 2009 Nov; 9(11):3715-9. PubMed ID: 19795838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure.
    Cao YY; Ouyang G; Wang CX; Yang GW
    Nano Lett; 2013 Feb; 13(2):436-43. PubMed ID: 23297740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facet-Selective Nucleation and Conformal Epitaxy of Ge Shells on Si Nanowires.
    Nguyen BM; Swartzentruber B; Ro YG; Dayeh SA
    Nano Lett; 2015 Nov; 15(11):7258-64. PubMed ID: 26447652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherently Strained Si-SixGe1-x Core-Shell Nanowire Heterostructures.
    Dillen DC; Wen F; Kim K; Tutuc E
    Nano Lett; 2016 Jan; 16(1):392-8. PubMed ID: 26606651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cracking the Si Shell Growth in Hexagonal GaP-Si Core-Shell Nanowires.
    Conesa-Boj S; Hauge HI; Verheijen MA; Assali S; Li A; Bakkers EP; Fontcuberta i Morral A
    Nano Lett; 2015 May; 15(5):2974-9. PubMed ID: 25922878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Catalyst-Free Formation and Hole Gas Accumulation by Fabricating Si/Ge Core-Shell and Si/Ge/Si Core-Double Shell Nanowires.
    Zhang X; Jevasuwan W; Sugimoto Y; Fukata N
    ACS Nano; 2019 Nov; 13(11):13403-13412. PubMed ID: 31626528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-Induced Band Gap Engineering in Selectively Grown GaN-(Al,Ga)N Core-Shell Nanowire Heterostructures.
    Hetzl M; Kraut M; Winnerl J; Francaviglia L; Döblinger M; Matich S; Fontcuberta I Morral A; Stutzmann M
    Nano Lett; 2016 Nov; 16(11):7098-7106. PubMed ID: 27766884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous Strain Relaxation in Core-Shell Nanowire Heterostructures via Simultaneous Coherent and Incoherent Growth.
    Lewis RB; Nicolai L; Küpers H; Ramsteiner M; Trampert A; Geelhaar L
    Nano Lett; 2017 Jan; 17(1):136-142. PubMed ID: 28001430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing misfit dislocations in InAs
    Lazarev S; Göransson DJO; Borgström M; Messing ME; Xu HQ; Dzhigaev D; Yefanov OM; Bauer S; Baumbach T; Feidenhans'l R; Samuelson L; Vartanyants IA
    Nanotechnology; 2019 Dec; 30(50):505703. PubMed ID: 31480023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Electron Mobility in Nonplanar Tensile Strained Si Epitaxially Grown on Si
    Wen F; Tutuc E
    Nano Lett; 2018 Jan; 18(1):94-100. PubMed ID: 29185763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires.
    Albani M; Assali S; Verheijen MA; Koelling S; Bergamaschini R; Pezzoli F; Bakkers EPAM; Miglio L
    Nanoscale; 2018 Apr; 10(15):7250-7256. PubMed ID: 29632946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core-Shell Nanowires As Revealed by in situ Transmission Electron Microscopy.
    Zhang C; Kvashnin DG; Bourgeois L; Fernando JFS; Firestein K; Sorokin PB; Fukata N; Golberg D
    Nano Lett; 2018 Nov; 18(11):7238-7246. PubMed ID: 30346785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plateau-Rayleigh Crystal Growth of Nanowire Heterostructures: Strain-Modified Surface Chemistry and Morphological Control in One, Two, and Three Dimensions.
    Day RW; Mankin MN; Lieber CM
    Nano Lett; 2016 Apr; 16(4):2830-6. PubMed ID: 26929996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twofold origin of strain-induced bending in core-shell nanowires: the GaP/InGaP case.
    Gagliano L; Albani M; Verheijen MA; Bakkers EPAM; Miglio L
    Nanotechnology; 2018 Aug; 29(31):315703. PubMed ID: 29749960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g
    Kim D; Li N; Sheehan CJ; Yoo J
    Nanoscale; 2018 Apr; 10(16):7343-7351. PubMed ID: 29664494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition from elastic to plastic strain release in core-shell nanowires revealed by in-plane x-ray diffraction.
    Al Hassan A; Salehi WA; Lewis RB; Anjum T; Sternemann C; Geelhaar L; Pietsch U
    Nanotechnology; 2021 May; 32(20):205705. PubMed ID: 33578397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bending and Twisting Lattice Tilt in Strained Core-Shell Nanowires Revealed by Nanofocused X-ray Diffraction.
    Wallentin J; Jacobsson D; Osterhoff M; Borgström MT; Salditt T
    Nano Lett; 2017 Jul; 17(7):4143-4150. PubMed ID: 28613907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.