These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 18954334)

  • 1. Suppressing NADPH oxidase-dependent oxidative stress in the vasculature with nitric oxide donors.
    Selemidis S
    Clin Exp Pharmacol Physiol; 2008 Nov; 35(11):1395-401. PubMed ID: 18954334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of oxidative stress in the endothelium and vascular wall.
    Jiang F; Drummond GR; Dusting GJ
    Endothelium; 2004; 11(2):79-88. PubMed ID: 15370067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells.
    Selemidis S; Dusting GJ; Peshavariya H; Kemp-Harper BK; Drummond GR
    Cardiovasc Res; 2007 Jul; 75(2):349-58. PubMed ID: 17568572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH oxidase and uncoupled nitric oxide synthase are major sources of reactive oxygen species in oral squamous cell carcinoma. Potential implications for immune regulation in high oxidative stress conditions.
    Czesnikiewicz-Guzik M; Lorkowska B; Zapala J; Czajka M; Szuta M; Loster B; Guzik TJ; Korbut R
    J Physiol Pharmacol; 2008 Mar; 59(1):139-52. PubMed ID: 18441394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular NADPH oxidases as drug targets for novel antioxidant strategies.
    Guzik TJ; Harrison DG
    Drug Discov Today; 2006 Jun; 11(11-12):524-33. PubMed ID: 16713904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis.
    Laufs U; Wassmann S; Czech T; Münzel T; Eisenhauer M; Böhm M; Nickenig G
    Arterioscler Thromb Vasc Biol; 2005 Apr; 25(4):809-14. PubMed ID: 15692095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between nitric oxide and angiotensin II in the endothelium: role in atherosclerosis and hypertension.
    Schulman IH; Zhou MS; Raij L
    J Hypertens Suppl; 2006 Mar; 24(1):S45-50. PubMed ID: 16601573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress and vascular remodelling.
    Fortuño A; San José G; Moreno MU; Díez J; Zalba G
    Exp Physiol; 2005 Jul; 90(4):457-62. PubMed ID: 15890797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxidative stress concept of nitrate tolerance and the antioxidant properties of hydralazine.
    Daiber A; Mülsch A; Hink U; Mollnau H; Warnholtz A; Oelze M; Münzel T
    Am J Cardiol; 2005 Oct; 96(7B):25i-36i. PubMed ID: 16226933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD(P)H oxidase and endothelial dysfunction.
    Muller G; Morawietz H
    Horm Metab Res; 2009 Feb; 41(2):152-8. PubMed ID: 18816427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling.
    Gao L; Mann GE
    Cardiovasc Res; 2009 Apr; 82(1):9-20. PubMed ID: 19179352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH oxidase and endothelial cell function.
    Ray R; Shah AM
    Clin Sci (Lond); 2005 Sep; 109(3):217-26. PubMed ID: 16104842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adventitial application of the NADPH oxidase inhibitor apocynin in vivo reduces neointima formation and endothelial dysfunction in rabbits.
    Chan EC; Datla SR; Dilley R; Hickey H; Drummond GR; Dusting GJ
    Cardiovasc Res; 2007 Sep; 75(4):710-8. PubMed ID: 17659266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucosyl hesperidin prevents endothelial dysfunction and oxidative stress in spontaneously hypertensive rats.
    Yamamoto M; Suzuki A; Jokura H; Yamamoto N; Hase T
    Nutrition; 2008 May; 24(5):470-6. PubMed ID: 18329851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The endothelin receptor antagonist CPU0213 is more effective than aminoguanidine to attenuate isoproterenol-induced vascular abnormality by suppressing overexpression of NADPH oxidase [correction of oxidas], ETA, ETB, and MMP9 in the vasculature.
    Xu J; Li N; Dai DZ; Yu F; Dai Y
    J Cardiovasc Pharmacol; 2008 Jul; 52(1):42-8. PubMed ID: 18594475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential vascular functions of Nox family NADPH oxidases.
    Brandes RP; Schröder K
    Curr Opin Lipidol; 2008 Oct; 19(5):513-8. PubMed ID: 18769233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sickle cell disease: role of reactive oxygen and nitrogen metabolites.
    Wood KC; Granger DN
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):926-32. PubMed ID: 17645642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain.
    Park L; Anrather J; Girouard H; Zhou P; Iadecola C
    J Cereb Blood Flow Metab; 2007 Dec; 27(12):1908-18. PubMed ID: 17429347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sirolimus-induced vascular dysfunction. Increased mitochondrial and nicotinamide adenosine dinucleotide phosphate oxidase-dependent superoxide production and decreased vascular nitric oxide formation.
    Jabs A; Göbel S; Wenzel P; Kleschyov AL; Hortmann M; Oelze M; Daiber A; Münzel T
    J Am Coll Cardiol; 2008 Jun; 51(22):2130-8. PubMed ID: 18510959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial function and oxidant stress.
    Harrison DG
    Clin Cardiol; 1997 Nov; 20(11 Suppl 2):II-11-7. PubMed ID: 9422847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.