BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 18954889)

  • 21. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne.
    Santibáñez C; Verdugo C; Ginocchio R
    Sci Total Environ; 2008 May; 395(1):1-10. PubMed ID: 18342913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of papermill sludge on growth of Medicago sativa, Festuca rubra and Agropyron trachycaulum in gold mine tailings: a greenhouse study.
    Green S; Renault S
    Environ Pollut; 2008 Feb; 151(3):524-31. PubMed ID: 17561322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions.
    Conesa HM; Robinson BH; Schulin R; Nowack B
    Environ Pollut; 2007 Feb; 145(3):700-7. PubMed ID: 17011091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytostabilization of gold mine tailings from New Zealand. Part 2: Experimental evaluation of arsenic mobilization during revegetation.
    Mains D; Craw D; Rufaut CG; Smith CM
    Int J Phytoremediation; 2006; 8(2):163-83. PubMed ID: 16924964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings.
    Zhou DM; Deng CF; Alshawabkeh AN; Cang L
    Environ Int; 2005 Aug; 31(6):885-90. PubMed ID: 15992926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial community changes during plant establishment at the San Pedro River mine tailings site.
    Rosario K; Iverson SL; Henderson DA; Chartrand S; McKeon C; Glenn EP; Maier RM
    J Environ Qual; 2007; 36(5):1249-59. PubMed ID: 17636285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid.
    Wang S; Mulligan CN
    Chemosphere; 2009 Jan; 74(2):274-9. PubMed ID: 18977015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of natural organic matter on arsenic mobilization from mine tailings.
    Wang S; Mulligan CN
    J Hazard Mater; 2009 Sep; 168(2-3):721-6. PubMed ID: 19297087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic enhancement of the phytostabilization of a semiarid mine tailing by a combination of organic amendment and native microorganisms (Funneliformis mosseae and Bacillus cereus).
    Caravaca F; Díaz G; Torres P; Campoy M; Roldán A
    Chemosphere; 2023 Jan; 312(Pt 1):137106. PubMed ID: 36336022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecosystem function in alluvial tailings after biosolids and lime addition.
    Brown S; Sprenger M; Maxemchuk A; Compton H
    J Environ Qual; 2005; 34(1):139-48. PubMed ID: 15647543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reclamation of a mine contaminated soil using biologically reactive organic matrices.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G
    Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments.
    Zhang X; Zhu Y; Zhang Y; Liu Y; Liu S; Guo J; Li R; Wu S; Chen B
    J Environ Sci (China); 2014 May; 26(5):1080-9. PubMed ID: 25079638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the environmental plasticity in the xerohalophyte Zygophyllum fabago L. for the phytomanagement of mine tailings in semiarid areas.
    Párraga-Aguado I; González-Alcaraz MN; López-Orenes A; Ferrer-Ayala MA; Conesa HM
    Chemosphere; 2016 Oct; 161():259-265. PubMed ID: 27434256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heavy metal leaching from mine tailings as affected by organic amendments.
    Schwab P; Zhu D; Banks MK
    Bioresour Technol; 2007 Nov; 98(15):2935-41. PubMed ID: 17157002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.
    Blodau C
    Sci Total Environ; 2006 Oct; 369(1-3):307-32. PubMed ID: 16806405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishment of two ectomycorrhizal shrub species in a semiarid site after in situ amendment with sugar beet, rock phosphate, and Aspergillus niger.
    Caravaca F; Alguacil MM; Azcón R; Parladé J; Torres P; Roldán A
    Microb Ecol; 2005 Jan; 49(1):73-82. PubMed ID: 15690228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Factors affecting methylmercury distribution in surficial, acidic, base-metal mine tailings.
    Winch S; Praharaj T; Fortin D; Lean DR
    Sci Total Environ; 2008 Mar; 392(2-3):242-51. PubMed ID: 18191180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of the use potential of edible sea urchins (Paracentrotus lividus) processing waste within the agricultural system: influence on soil chemical and biological properties and bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth in an amended acidic soil.
    Garau G; Castaldi P; Deiana S; Campus P; Mazza A; Deiana P; Pais A
    J Environ Manage; 2012 Oct; 109():12-8. PubMed ID: 22659645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal.
    Morales TA; Dopson M; Athar R; Herbert RB
    Biotechnol Bioeng; 2005 Jun; 90(5):543-51. PubMed ID: 15818559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobic biodegradation of an organic by-products leachate by interaction with different mine tailings.
    Markewitz K; Cabral AR; Panarotto CT; Lefebvre G
    J Hazard Mater; 2004 Jul; 110(1-3):93-104. PubMed ID: 15177730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.