BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18954889)

  • 41. Biochar and urban solid refuse ameliorate the inhospitality of acidic mine tailings and foster effective spontaneous plant colonization under semiarid climate.
    Peñalver-Alcalá A; Álvarez-Rogel J; Conesa HM; González-Alcaraz MN
    J Environ Manage; 2021 Aug; 292():112824. PubMed ID: 34033987
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste.
    Diaby N; Dold B; Pfeifer HR; Holliger C; Johnson DB; Hallberg KB
    Environ Microbiol; 2007 Feb; 9(2):298-307. PubMed ID: 17222129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils.
    Li YT; Becquer T; Dai J; Quantin C; Benedetti MF
    Environ Pollut; 2009 Apr; 157(4):1249-57. PubMed ID: 19152990
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings.
    Govarthanan M; Lee KJ; Cho M; Kim JS; Kamala-Kannan S; Oh BT
    Chemosphere; 2013 Feb; 90(8):2267-72. PubMed ID: 23149181
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.
    Jiménez-Rodríguez AM; Durán-Barrantes MM; Borja R; Sánchez E; Colmenarejo MF; Raposo F
    J Hazard Mater; 2009 Jun; 165(1-3):759-65. PubMed ID: 19056169
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site.
    Yang J; Tang Y; Yang K; Rouff AA; Elzinga EJ; Huang JH
    J Hazard Mater; 2014 Jan; 264():498-504. PubMed ID: 24268537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancement of arsenic mobility by indigenous bacteria from mine tailings as response to organic supply.
    Lee JU; Lee SW; Chon HT; Kim KW; Lee JS
    Environ Int; 2009 Apr; 35(3):496-501. PubMed ID: 18789531
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficacy of lime, biosolids, and mycorrhiza for the phytostabilization of sulfidic copper tailings in Chile: a greenhouse experiment.
    Verdugo C; Sánchez P; Santibáñez C; Urrestarazu P; Bustamante E; Silva Y; Gourdon D; Ginocchio R
    Int J Phytoremediation; 2011 Feb; 13(2):107-25. PubMed ID: 21598780
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids.
    Pepper IL; Zerzghi HG; Bengson SA; Iker BC; Banerjee MJ; Brooks JP
    J Appl Microbiol; 2012 Sep; 113(3):569-77. PubMed ID: 22738811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metal-binding hydrogel particles alleviate soil toxicity and facilitate healthy plant establishment of the native metallophyte grass Astrebla lappacea in mine waste rock and tailings.
    Bigot M; Guterres J; Rossato L; Pudmenzky A; Doley D; Whittaker M; Pillai-McGarry U; Schmidt S
    J Hazard Mater; 2013 Mar; 248-249():424-34. PubMed ID: 23416487
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Water-soluble organic matter and biological activity of a degraded soil amended with pig slurry.
    Hernández D; Fernández JM; Plaza C; Polo A
    Sci Total Environ; 2007 May; 378(1-2):101-3. PubMed ID: 17320153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.
    Hulshof AH; Blowes DW; Gould WD
    Water Res; 2006 May; 40(9):1816-26. PubMed ID: 16626781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. When liming and revegetation contribute to the mobilisation of metals: learning lessons for the phytomanagement of metal-polluted wetlands.
    González-Alcaraz MN; Conesa HM; Alvarez-Rogel J
    J Environ Manage; 2013 Feb; 116():72-80. PubMed ID: 23291403
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plant growth-promoting bacteria for phytostabilization of mine tailings.
    Grandlic CJ; Mendez MO; Chorover J; Machado B; Maier RM
    Environ Sci Technol; 2008 Mar; 42(6):2079-84. PubMed ID: 18409640
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Properties of slate mining wastes incubated with grape marc compost under laboratory conditions.
    Paradelo R; Moldes AB; Barral MT
    Waste Manag; 2009 Feb; 29(2):579-84. PubMed ID: 18706797
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC
    Chemosphere; 2009 Mar; 74(10):1292-300. PubMed ID: 19118864
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soils.
    Pérez-de-Mora A; Madejón E; Burgos P; Cabrera F
    Sci Total Environ; 2006 Jun; 363(1-3):28-37. PubMed ID: 16581109
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phytostabilization of mine tailings in arid and semiarid environments--an emerging remediation technology.
    Mendez MO; Maier RM
    Environ Health Perspect; 2008 Mar; 116(3):278-83. PubMed ID: 18335091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Long-term evaluation of coal fly ash and mine tailings co-placement: a site-specific study.
    Yeheyis MB; Shang JQ; Yanful EK
    J Environ Manage; 2009 Oct; 91(1):237-44. PubMed ID: 19744768
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Short and medium-term effects of two-phase olive mill waste application on olive grove production and soil properties under semiarid mediterranean conditions.
    López-Piñeiro A; Albarrán A; Nunes JM; Barreto C
    Bioresour Technol; 2008 Nov; 99(17):7982-7. PubMed ID: 18462936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.