These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18955024)

  • 21. Characterization of the structure and permeability of titanium foams for spinal fusion devices.
    Singh R; Lee PD; Lindley TC; Dashwood RJ; Ferrie E; Imwinkelried T
    Acta Biomater; 2009 Jan; 5(1):477-87. PubMed ID: 18657494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds.
    Jack KS; Velayudhan S; Luckman P; Trau M; Grøndahl L; Cooper-White J
    Acta Biomater; 2009 Sep; 5(7):2657-67. PubMed ID: 19375396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite element study of scaffold architecture design and culture conditions for tissue engineering.
    Olivares AL; Marsal E; Planell JA; Lacroix D
    Biomaterials; 2009 Oct; 30(30):6142-9. PubMed ID: 19674779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A complete structural performance analysis and modelling of hydroxyapatite scaffolds with variable porosity.
    Gallegos-Nieto E; Medellín-Castillo HI; de Lange DF
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1225-1237. PubMed ID: 24579777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone.
    Parnell WJ; Vu MB; Grimal Q; Naili S
    Biomech Model Mechanobiol; 2012 Jul; 11(6):883-901. PubMed ID: 22109098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering.
    Tierney CM; Haugh MG; Liedl J; Mulcahy F; Hayes B; O'Brien FJ
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):202-9. PubMed ID: 19627824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A finite element prediction of strain on cells in a highly porous collagen-glycosaminoglycan scaffold.
    Stops AJ; McMahon LA; O'Mahoney D; Prendergast PJ; McHugh PE
    J Biomech Eng; 2008 Dec; 130(6):061001. PubMed ID: 19045530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of the multiscale FEM to the modeling of cancellous bone.
    Ilic S; Hackl K; Gilbert R
    Biomech Model Mechanobiol; 2010 Feb; 9(1):87-102. PubMed ID: 19568778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model for prediction of bone stiffness using a mechanical approach of composite materials.
    Perreux DM; Johnson WS
    J Biomech Eng; 2007 Aug; 129(4):494-502. PubMed ID: 17655470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating.
    Naghieh S; Karamooz Ravari MR; Badrossamay M; Foroozmehr E; Kadkhodaei M
    J Mech Behav Biomed Mater; 2016 Jun; 59():241-250. PubMed ID: 26874065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-linear elastic three-dimensional finite element analysis on the effect of endocrown material rigidity on alveolar bone remodeling process.
    Aversa R; Apicella D; Perillo L; Sorrentino R; Zarone F; Ferrari M; Apicella A
    Dent Mater; 2009 May; 25(5):678-90. PubMed ID: 19150574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mathematical relationships between bone density and mechanical properties: a literature review.
    Helgason B; Perilli E; Schileo E; Taddei F; Brynjólfsson S; Viceconti M
    Clin Biomech (Bristol, Avon); 2008 Feb; 23(2):135-46. PubMed ID: 17931759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectral analysis and connectivity of porous microstructures in bone.
    Golden KM; Benjamin Murphy N; Cherkaev E
    J Biomech; 2011 Jan; 44(2):337-44. PubMed ID: 21094945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation.
    Kluess D; Souffrant R; Mittelmeier W; Wree A; Schmitz KP; Bader R
    Comput Methods Programs Biomed; 2009 Jul; 95(1):23-30. PubMed ID: 19231021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A micromechanical hyperelastic modeling of brain white matter under large deformation.
    Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Homogenized finite element analysis on effective elastoplastic mechanical behaviors of composite with imperfect interfaces.
    Jiang WG; Zhong RZ; Qin QH; Tong YG
    Int J Mol Sci; 2014 Dec; 15(12):23389-407. PubMed ID: 25522170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesoscopic model for mechanical characterization of biological protein materials.
    Yoon G; Park HJ; Na S; Eom K
    J Comput Chem; 2009 Apr; 30(6):873-80. PubMed ID: 18780341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Mechanobiology-based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds.
    Boccaccio A; Uva AE; Fiorentino M; Lamberti L; Monno G
    Int J Biol Sci; 2016; 12(1):1-17. PubMed ID: 26722213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.