These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18955111)

  • 41. [Dynamics of lipid peroxidation of membranes in cells and mitochondrial fraction of neocortex in non- and preconditioned rats after severe hypobaric hypoxia].
    Kislin MS; Tiul'kova EI; Samoĭlov MO
    Zh Evol Biokhim Fiziol; 2011; 47(2):157-64. PubMed ID: 21598701
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium-induced precipitate formation in brain mitochondria: composition, calcium capacity, and retention.
    Kristian T; Pivovarova NB; Fiskum G; Andrews SB
    J Neurochem; 2007 Aug; 102(4):1346-56. PubMed ID: 17663756
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The anti-inflammatory agent flufenamic acid depresses store-operated channels by altering mitochondrial calcium homeostasis.
    Tu P; Brandolin G; Bouron A
    Neuropharmacology; 2009; 56(6-7):1010-6. PubMed ID: 19233217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors.
    Chalmers S; McCarron JG
    Cell Calcium; 2009 Aug; 46(2):107-13. PubMed ID: 19577805
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measurement of membrane permeability and the permeability transition of mitochondria.
    Zamzami N; Maisse C; Métivier D; Kroemer G
    Methods Cell Biol; 2007; 80():327-40. PubMed ID: 17445702
    [No Abstract]   [Full Text] [Related]  

  • 46. Role of the mitochondrial sodium/calcium exchanger in neuronal physiology and in the pathogenesis of neurological diseases.
    Castaldo P; Cataldi M; Magi S; Lariccia V; Arcangeli S; Amoroso S
    Prog Neurobiol; 2009 Jan; 87(1):58-79. PubMed ID: 18952141
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational study of non-homogeneous distribution of Ca(2+) handling systems in cerebellar granule cells.
    Saftenku EE
    J Theor Biol; 2009 Mar; 257(2):228-44. PubMed ID: 19121636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling.
    Koopman WJ; Distelmaier F; Esseling JJ; Smeitink JA; Willems PH
    Methods; 2008 Dec; 46(4):304-11. PubMed ID: 18929665
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mitochondrial membrane permeabilization in neuronal injury.
    Galluzzi L; Blomgren K; Kroemer G
    Nat Rev Neurosci; 2009 Jul; 10(7):481-94. PubMed ID: 19543220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GIF-0173 protects against cerebral infarction through DP1 receptor activation.
    Thura M; Hokamura K; Yamamoto S; Maeda M; Furuta K; Suzuki M; Ibaraki K; Umemura K
    Exp Neurol; 2009 Oct; 219(2):481-91. PubMed ID: 19576888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dehydromonocrotaline induces cyclosporine A-insensitive mitochondrial permeability transition/cytochrome c release.
    dos Santos AB; Dorta DJ; Pestana CR; Maioli MA; Curti C; Mingatto FE
    Toxicon; 2009 Jul; 54(1):16-22. PubMed ID: 19285518
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estradiol affects calcium transport across mitochondrial membrane in different brain regions.
    Petrović S; Demajo M; Horvat A
    Ann N Y Acad Sci; 2005 Jun; 1048():341-3. PubMed ID: 16154947
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Having a swell time--mitochondrial morphology and plant cell death programmes.
    Logan DC
    J Microsc; 2008 Aug; 231(2):215-24. PubMed ID: 18778419
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detecting mitochondrial permeability transition by confocal imaging of intact cells pinocytically loaded with calcein.
    Jones RA; Smail A; Wilson MR
    Eur J Biochem; 2002 Aug; 269(16):3990-7. PubMed ID: 12180975
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Perinatal Asphyxia and Brain Development: Mitochondrial Damage Without Anatomical or Cellular Losses.
    Lima JPM; Rayêe D; Silva-Rodrigues T; Pereira PRP; Mendonca APM; Rodrigues-Ferreira C; Szczupak D; Fonseca A; Oliveira MF; Lima FRS; Lent R; Galina A; Uziel D
    Mol Neurobiol; 2018 Nov; 55(11):8668-8679. PubMed ID: 29582399
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TOXI-SIM-A simulation tool for the analysis of mitochondrial and plasma membrane potentials.
    Huber HJ; Plchut M; Weisová P; Düssmann H; Wenus J; Rehm M; Ward MW; Prehn JH
    J Neurosci Methods; 2009 Jan; 176(2):270-5. PubMed ID: 18824028
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photo-induced damages of cytoplasmic and mitochondrial membranes by a [C60]fullerene malonic acid derivative.
    Yang X; Chen L; Qiao X; Fan C
    Int J Toxicol; 2007; 26(3):197-201. PubMed ID: 17564900
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of the effects of selected chalcones, dihydrochalcones and some cyclic flavonoids on mitochondrial outer membrane determined by fluorescence spectroscopy.
    Tomecková V; Guzy J; Kusnír J; Fodor K; Mareková M; Chavková Z; Perjési P
    J Biochem Biophys Methods; 2006 Nov; 69(1-2):143-50. PubMed ID: 16814866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Disturbance of mitochondrial functions caused by N-acetylglutamate and N-acetylmethionine in brain of adolescent rats: Potential relevance in aminoacylase 1 deficiency.
    Bortoluzzi VT; Ribeiro RT; Zemniaçak ÂB; Cunha SA; Sass JO; Castilho RF; Amaral AU; Wajner M
    Neurochem Int; 2023 Dec; 171():105631. PubMed ID: 37852579
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cytoplasmic and mitochondrial redox changes in the brain during hypoxia.
    Siesjö BK; Berntman L
    Adv Neurol; 1979; 26():319-23. PubMed ID: 517304
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.