These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18956098)

  • 1. A theoretical study of medium effects on the structure of the glycine analogue aminomethylphosphonic acid.
    Benbrahim N; Rahmouni A; Ruiz-López MF
    Phys Chem Chem Phys; 2008 Sep; 10(36):5624-32. PubMed ID: 18956098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine dimers: structure, stability, and medium effects.
    Friant-Michel P; Ruiz-López MF
    Chemphyschem; 2010 Nov; 11(16):3499-504. PubMed ID: 20872395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformations of the glycine tripeptide analog Ac-Gly-Gly-NHMe: a computational study including aqueous solvation effects.
    Atwood RE; Urban JJ
    J Phys Chem A; 2012 Feb; 116(5):1396-408. PubMed ID: 22214366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent effects on glycine II. Water-assisted tautomerization.
    Balta B; Aviyente V
    J Comput Chem; 2004 Apr; 25(5):690-703. PubMed ID: 14978712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant potential of glutathione: a theoretical study.
    Fiser B; Szori M; Jójárt B; Izsák R; Csizmadia IG; Viskolcz B
    J Phys Chem B; 2011 Sep; 115(38):11269-77. PubMed ID: 21853966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent effects on glycine. I. A supermolecule modeling of tautomerization via intramolecular proton transfer.
    Balta B; Aviyente V
    J Comput Chem; 2003 Nov; 24(14):1789-802. PubMed ID: 12964198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive studies on the tautomerization of glycine: a theoretical study.
    Kim CK; Park BH; Lee HW; Kim CK
    Org Biomol Chem; 2013 Feb; 11(8):1407-13. PubMed ID: 23334558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational spectra of alpha-amino acids in the zwitterionic state in aqueous solution and the solid state: DFT calculations and the influence of hydrogen bonding.
    Chowdhry BZ; Dines TJ; Jabeen S; Withnall R
    J Phys Chem A; 2008 Oct; 112(41):10333-47. PubMed ID: 18816033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of chlorophyll a hydrates formation in aqueous organic solvents.
    Ben Fredj A; Ruiz-López MF
    J Phys Chem B; 2010 Jan; 114(1):681-7. PubMed ID: 20020703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ionization on the conformational preferences of peptide models. Ramachandran surfaces of N-formyl-glycine amide and N-formyl-alanine amide radical cations.
    Gil A; Sodupe M; Bertran J
    J Comput Chem; 2009 Sep; 30(12):1771-84. PubMed ID: 19090571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical investigation of the relative stability of hydrated glycine and methylcarbamic acid--from water clusters to interstellar ices.
    Kayi H; Kaiser RI; Head JD
    Phys Chem Chem Phys; 2012 Apr; 14(14):4942-58. PubMed ID: 22382393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Important Role of the Hydroxyl Group on the Conformational Adaptability in Bis(l-threoninato)copper(II) Compared to Bis(l-allo-threoninato)copper(II): Quantum Chemical Study.
    Marković M; Ramek M; Loher C; Sabolović J
    Inorg Chem; 2016 Aug; 55(15):7694-708. PubMed ID: 27442350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization.
    Rahaman O; van Duin AC; Goddard WA; Doren DJ
    J Phys Chem B; 2011 Jan; 115(2):249-61. PubMed ID: 21166434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent dielectric effect and side chain mutation on the structural stability of Burkholderia cepacia lipase active site: a quantum mechanical/molecular mechanics study.
    Tahan A; Monajjemi M
    Acta Biotheor; 2011 Dec; 59(3-4):291-312. PubMed ID: 21710316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsolvation and hydrogen bond interactions in Glycine Dipeptide: molecular dynamics and density functional theory studies.
    Yogeswari B; Kanakaraju R; Boopathi S; Kolandaivel P
    J Mol Graph Model; 2012 May; 35():11-20. PubMed ID: 22481074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular interactions of 2'-deoxyguanosine 5'-monophosphate with glycine in aqueous media probed via concentration and pH dependent Raman spectroscopic investigations and DFT study.
    Singh S; Srivastava SK; Donfack P; Schlücker S; Materny A; Asthana BP
    Phys Chem Chem Phys; 2012 Nov; 14(41):14315-24. PubMed ID: 23008833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum-chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites.
    Szeląg M; Mikulski D; Molski M
    J Mol Model; 2012 Jul; 18(7):2907-16. PubMed ID: 22127611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first step in glycine solvation: the glycine-water complex.
    Balabin RM
    J Phys Chem B; 2010 Nov; 114(46):15075-8. PubMed ID: 20964428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical studies on the intramolecular hydrogen bond and tautomerism of 8-mercaptoquinoline in the gaseous phase and in solution using modern DFT methods.
    Shchavlev AE; Pankratov AN; Shalabay AV
    J Phys Chem A; 2005 May; 109(18):4137-48. PubMed ID: 16833738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.