These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 18956192)
1. Non-periodicity in chemostat equations: a multi-dimensional negative Bendixson-Dulac criterion. Fiedler B; Hsu SB J Math Biol; 2009 Aug; 59(2):233-53. PubMed ID: 18956192 [TBL] [Abstract][Full Text] [Related]
2. Competition in chemostat-type equations with two habitats. Nakaoka S; Takeuchi Y Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673 [TBL] [Abstract][Full Text] [Related]
4. A periodic Droop model for two species competition in a chemostat. White MC; Zhao XQ Bull Math Biol; 2009 Jan; 71(1):145-61. PubMed ID: 18825462 [TBL] [Abstract][Full Text] [Related]
5. Long run coexistence in the chemostat with multiple species. Rapaport A; Dochain D; Harmand J J Theor Biol; 2009 Mar; 257(2):252-9. PubMed ID: 19111560 [TBL] [Abstract][Full Text] [Related]
6. Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control. Guo H; Chen L J Theor Biol; 2009 Oct; 260(4):502-9. PubMed ID: 19615380 [TBL] [Abstract][Full Text] [Related]
7. Species extinction and permanence of an impulsively controlled two-prey one-predator system with seasonal effects. Baek H Biosystems; 2009 Oct; 98(1):7-18. PubMed ID: 19591895 [TBL] [Abstract][Full Text] [Related]
8. Limit cycles in a chemostat model for a single species with age structure. Toth D; Kot M Math Biosci; 2006 Jul; 202(1):194-217. PubMed ID: 16624336 [TBL] [Abstract][Full Text] [Related]
9. Global dynamics of the chemostat with different removal rates and variable yields. Sari T; Mazenc F Math Biosci Eng; 2011 Jul; 8(3):827-40. PubMed ID: 21675813 [TBL] [Abstract][Full Text] [Related]
10. A neutral model of edge effects. Babak P; He F Theor Popul Biol; 2009 Feb; 75(1):76-83. PubMed ID: 19116159 [TBL] [Abstract][Full Text] [Related]
11. Complex dynamics of microbial competition in the gradostat. Gaki A; Theodorou A; Vayenas DV; Pavlou S J Biotechnol; 2009 Jan; 139(1):38-46. PubMed ID: 18809443 [TBL] [Abstract][Full Text] [Related]
12. A fundamental principle governing populations. Chester M Acta Biotheor; 2012 Sep; 60(3):289-302. PubMed ID: 22581491 [TBL] [Abstract][Full Text] [Related]
13. Feedback control for chemostat models. De Leenheer P; Smith H J Math Biol; 2003 Jan; 46(1):48-70. PubMed ID: 12525935 [TBL] [Abstract][Full Text] [Related]
14. Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor. Yuan S; Xiao D; Han M Math Biosci; 2006 Jul; 202(1):1-28. PubMed ID: 16797043 [TBL] [Abstract][Full Text] [Related]
15. Periodic, quasi-periodic, and chaotic coexistence of two competing microbial populations in a periodically operated chemostat. Lenas P; Pavlou S Math Biosci; 1994 May; 121(1):61-110. PubMed ID: 8204991 [TBL] [Abstract][Full Text] [Related]
16. The roles of predator maturation delay and functional response in determining the periodicity of predator-prey cycles. Wang H; Nagy JD; Gilg O; Kuang Y Math Biosci; 2009 Sep; 221(1):1-10. PubMed ID: 19563815 [TBL] [Abstract][Full Text] [Related]
17. Coexistence in the chemostat as a result of metabolic by-products. Hesseler J; Schmidt JK; Reichl U; Flockerzi D J Math Biol; 2006 Oct; 53(4):556-84. PubMed ID: 16819650 [TBL] [Abstract][Full Text] [Related]
18. Competition in the chemostat: A stochastic multi-species model and its asymptotic behavior. Xu C; Yuan S Math Biosci; 2016 Oct; 280():1-9. PubMed ID: 27474206 [TBL] [Abstract][Full Text] [Related]
19. On the stability of periodic solutions in the perturbed chemostat. Mazenc F; Malisoff M; De Leenheer P Math Biosci Eng; 2007 Apr; 4(2):319-38. PubMed ID: 17658929 [TBL] [Abstract][Full Text] [Related]
20. Saddle-point approximations, integrodifference equations, and invasions. Kot M; Neubert MG Bull Math Biol; 2008 Aug; 70(6):1790-826. PubMed ID: 18648885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]