These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18956405)

  • 1. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.
    Inamdar SN; Ingole PP; Haram SK
    Chemphyschem; 2008 Dec; 9(17):2574-9. PubMed ID: 18956405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the exciton binding energy in CdSe quantum dots.
    Meulenberg RW; Lee JR; Wolcott A; Zhang JZ; Terminello LJ; van Buuren T
    ACS Nano; 2009 Feb; 3(2):325-30. PubMed ID: 19236067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the size-dependent energy gap of individual CdSe quantum dots by valence electron energy-loss spectroscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2007; 107(2-3):267-73. PubMed ID: 16996213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited-state relaxation in PbSe quantum dots.
    An JM; Califano M; Franceschetti A; Zunger A
    J Chem Phys; 2008 Apr; 128(16):164720. PubMed ID: 18447492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A consolidated account of electrochemical determination of band structure parameters in II-VI semiconductor quantum dots: a tutorial review.
    Ingole PP
    Phys Chem Chem Phys; 2019 Feb; 21(9):4695-4716. PubMed ID: 30775741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals.
    Jasieniak J; Califano M; Watkins SE
    ACS Nano; 2011 Jul; 5(7):5888-902. PubMed ID: 21662980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size dependence of molar absorption coefficients of CdSe semiconductor quantum rods.
    Shaviv E; Salant A; Banin U
    Chemphyschem; 2009 May; 10(7):1028-31. PubMed ID: 19347917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots.
    De Geyter B; Justo Y; Moreels I; Lambert K; Smet PF; Van Thourhout D; Houtepen AJ; Grodzinska D; de Mello Donega C; Meijerink A; Vanmaekelbergh D; Hens Z
    ACS Nano; 2011 Jan; 5(1):58-66. PubMed ID: 21189031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric Confinement and Excitonic Effects in Two-Dimensional Nanoplatelets.
    Ji B; Rabani E; Efros AL; Vaxenburg R; Ashkenazi O; Azulay D; Banin U; Millo O
    ACS Nano; 2020 Jul; 14(7):8257-8265. PubMed ID: 32584026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of energetics and kinetics from single-particle intermittency and ensemble-averaged fluorescence intensity decay of quantum dots.
    Tang J; Marcus RA
    J Chem Phys; 2006 Jul; 125(4):44703. PubMed ID: 16942170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium selenide quantum wires and the transition from 3D to 2D confinement.
    Yu H; Li J; Loomis RA; Gibbons PC; Wang LW; Buhro WE
    J Am Chem Soc; 2003 Dec; 125(52):16168-9. PubMed ID: 14692740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics within the exciton fine structure of colloidal CdSe quantum dots.
    Huxter VM; Kovalevskij V; Scholes GD
    J Phys Chem B; 2005 Nov; 109(43):20060-3. PubMed ID: 16853592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters.
    Kilina S; Ivanov S; Tretiak S
    J Am Chem Soc; 2009 Jun; 131(22):7717-26. PubMed ID: 19425603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental observation of quantum confinement in the conduction band of CdSe quantum dots.
    Lee JR; Meulenberg RW; Hanif KM; Mattoussi H; Klepeis JE; Terminello LJ; van Buuren T
    Phys Rev Lett; 2007 Apr; 98(14):146803. PubMed ID: 17501301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size dependence of the multiple exciton generation rate in CdSe quantum dots.
    Lin Z; Franceschetti A; Lusk MT
    ACS Nano; 2011 Apr; 5(4):2503-11. PubMed ID: 21355556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How quickly does a hole relax into an engineered defect state in CdSe quantum dots.
    Avidan A; Pinkas I; Oron D
    ACS Nano; 2012 Apr; 6(4):3063-9. PubMed ID: 22439798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic, linear, and nonlinear optical properties of III-V indium compound semiconductors.
    Reshak AH
    J Chem Phys; 2006 Jul; 125(3):34710. PubMed ID: 16863376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.
    Wieliczka BM; Kaledin AL; Buhro WE; Loomis RA
    ACS Nano; 2018 Jun; 12(6):5539-5550. PubMed ID: 29787230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambient synthesis and characterization of high-quality CdSe quantum dots by an aqueous route.
    Kalasad MN; Rabinal MK; Mulimani BG
    Langmuir; 2009 Nov; 25(21):12729-35. PubMed ID: 19711933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements.
    Segets D; Lucas JM; Klupp Taylor RN; Scheele M; Zheng H; Alivisatos AP; Peukert W
    ACS Nano; 2012 Oct; 6(10):9021-32. PubMed ID: 22984808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.