BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 18956415)

  • 41. Toward image guided robotic surgery: system validation.
    Herrell SD; Kwartowitz DM; Milhoua PM; Galloway RL
    J Urol; 2009 Feb; 181(2):783-9; discussion 789-90. PubMed ID: 19091336
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stereotaxis Niobe magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy.
    Carpi F; Pappone C
    Expert Rev Med Devices; 2009 Sep; 6(5):487-98. PubMed ID: 19751121
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frameless stereotactic targeting devices: technical features, targeting errors and clinical results.
    Widmann G; Schullian P; Ortler M; Bale R
    Int J Med Robot; 2012 Mar; 8(1):1-16. PubMed ID: 22076960
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Robotic whole body stereotactic radiosurgery: clinical advantages of the Cyberknife integrated system.
    Coste-Manière E; Olender D; Kilby W; Schulz RA
    Int J Med Robot; 2005 Jan; 1(2):28-39. PubMed ID: 17518376
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a robotic navigation system for neurosurgery.
    Tseng CS; Chung CW; Chen HH; Wang SS; Tseng HM
    Stud Health Technol Inform; 1999; 62():358-9. PubMed ID: 10538386
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robotic-assisted surgery for low rectal dissection: from better views to better outcome.
    Ng KH; Lim YK; Ho KS; Ooi BS; Eu KW
    Singapore Med J; 2009 Aug; 50(8):763-7. PubMed ID: 19710972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental new automatic tools for robotic stereotactic neurosurgery: towards "no hands" procedure of leads implantation into a brain target.
    Mazzone P; Arena P; Cantelli L; Spampinato G; Sposato S; Cozzolino S; Demarinis P; Muscato G
    J Neural Transm (Vienna); 2016 Jul; 123(7):737-750. PubMed ID: 27194228
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
    Cruces RA; Wahrburg J
    Int J Med Robot; 2007 Dec; 3(4):316-22. PubMed ID: 17948919
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of robot-assisted and manual retinal vessel microcannulation in an animal model.
    Ueta T; Nakano T; Ida Y; Sugita N; Mitsuishi M; Tamaki Y
    Br J Ophthalmol; 2011 May; 95(5):731-4. PubMed ID: 21156701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trauma Pod: a semi-automated telerobotic surgical system.
    Garcia P; Rosen J; Kapoor C; Noakes M; Elbert G; Treat M; Ganous T; Hanson M; Manak J; Hasser C; Rohler D; Satava R
    Int J Med Robot; 2009 Jun; 5(2):136-46. PubMed ID: 19222048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How to do it: importance of left atrial side retraction in robotic and minimally invasive mitral valve surgery.
    Ishikawa N; Sun YS; Nifong LW; Watanabe G; Chitwood WR
    Heart Surg Forum; 2008; 11(5):E270-1. PubMed ID: 18948238
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The case for MR-compatible robotics: a review of the state of the art.
    Elhawary H; Tse ZT; Hamed A; Rea M; Davies BL; Lamperth MU
    Int J Med Robot; 2008 Jun; 4(2):105-13. PubMed ID: 18481822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Image-guided robotic neurosurgery--an in vitro and in vivo point accuracy evaluation experimental study.
    Chan F; Kassim I; Lo C; Ho CL; Low D; Ang BT; Ng I
    Surg Neurol; 2009 Jun; 71(6):640-7, discussion 647-8. PubMed ID: 19329150
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of robotics to stereotactic neurosurgery.
    Young RF
    Neurol Res; 1987 Jun; 9(2):123-8. PubMed ID: 2886941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of freehand-navigated and aiming device-navigated targeting of liver lesions.
    Wallach D; Toporek G; Weber S; Bale R; Widmann G
    Int J Med Robot; 2014 Mar; 10(1):35-43. PubMed ID: 23832927
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neurosurgical robot Minerva: first results and current developments.
    Glauser D; Fankhauser H; Epitaux M; Hefti JL; Jaccottet A
    J Image Guid Surg; 1995; 1(5):266-72. PubMed ID: 9080346
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Motorization of a surgical microscope for intra-operative navigation and intuitive control.
    Finke M; Schweikard A
    Int J Med Robot; 2010 Sep; 6(3):269-80. PubMed ID: 20812267
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology: a comparative phantom study.
    Stoffner R; Augschöll C; Widmann G; Böhler D; Bale R
    Rofo; 2009 Sep; 181(9):851-8. PubMed ID: 19517342
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Magnetic resonance imaging-compatible, three-degrees-of-freedom joystick for surgical robot.
    Harja J; Tikkanen J; Sorvoja H; Myllylä R
    Int J Med Robot; 2007 Dec; 3(4):365-71. PubMed ID: 18008387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.