These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
526 related articles for article (PubMed ID: 18956863)
1. Virtual screening for R-groups, including predicted pIC50 contributions, within large structural databases, using Topomer CoMFA. Cramer RD; Cruz P; Stahl G; Curtiss WC; Campbell B; Masek BB; Soltanshahi F J Chem Inf Model; 2008 Nov; 48(11):2180-95. PubMed ID: 18956863 [TBL] [Abstract][Full Text] [Related]
2. Topomer CoMFA: a design methodology for rapid lead optimization. Cramer RD J Med Chem; 2003 Jan; 46(3):374-88. PubMed ID: 12540237 [TBL] [Abstract][Full Text] [Related]
3. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps. Marrero-Ponce Y; Iyarreta-VeitÃa M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304 [TBL] [Abstract][Full Text] [Related]
4. Structural analysis of carboline derivatives as inhibitors of MAPKAP K2 using 3D QSAR and docking studies. Nayana RS; Bommisetty SK; Singh K; Bairy SK; Nunna S; Pramod A; Muttineni R J Chem Inf Model; 2009 Jan; 49(1):53-67. PubMed ID: 19119997 [TBL] [Abstract][Full Text] [Related]
5. Similarity search profiles as a diagnostic tool for the analysis of virtual screening calculations. Xue L; Godden JW; Stahura FL; Bajorath J J Chem Inf Comput Sci; 2004; 44(4):1275-81. PubMed ID: 15272835 [TBL] [Abstract][Full Text] [Related]
6. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114 [TBL] [Abstract][Full Text] [Related]
7. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity. Martin E; Mukherjee P; Sullivan D; Jansen J J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971 [TBL] [Abstract][Full Text] [Related]
8. FieldScreen: virtual screening using molecular fields. Application to the DUD data set. Cheeseright TJ; Mackey MD; Melville JL; Vinter JG J Chem Inf Model; 2008 Nov; 48(11):2108-17. PubMed ID: 18991371 [TBL] [Abstract][Full Text] [Related]
9. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function. Schormann N; Senkovich O; Walker K; Wright DL; Anderson AC; Rosowsky A; Ananthan S; Shinkre B; Velu S; Chattopadhyay D Proteins; 2008 Dec; 73(4):889-901. PubMed ID: 18536013 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of binary QSAR models derived from LUDI and MOE scoring functions for structure based virtual screening. Prathipati P; Saxena AK J Chem Inf Model; 2006; 46(1):39-51. PubMed ID: 16426038 [TBL] [Abstract][Full Text] [Related]
11. Enhancing the effectiveness of similarity-based virtual screening using nearest-neighbor information. Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A J Med Chem; 2005 Nov; 48(22):7049-54. PubMed ID: 16250664 [TBL] [Abstract][Full Text] [Related]
12. Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments. Ebalunode JO; Zheng W J Chem Inf Model; 2009 Jun; 49(6):1313-20. PubMed ID: 19480404 [TBL] [Abstract][Full Text] [Related]
13. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships. Cheng A; Merz KM J Med Chem; 2003 Aug; 46(17):3572-80. PubMed ID: 12904062 [TBL] [Abstract][Full Text] [Related]
14. Using molecular docking, 3D-QSAR, and cluster analysis for screening structurally diverse data sets of pharmacological interest. Santos-Filho OA; Cherkasov A J Chem Inf Model; 2008 Oct; 48(10):2054-65. PubMed ID: 18816024 [TBL] [Abstract][Full Text] [Related]
15. Representation of chemical information in OASIS centralized 3D database for existing chemicals. Nikolov N; Grancharov V; Stoyanova G; Pavlov T; Mekenyan O J Chem Inf Model; 2006; 46(6):2537-51. PubMed ID: 17125194 [TBL] [Abstract][Full Text] [Related]
16. kappa Nearest neighbors QSAR modeling as a variational problem: theory and applications. Itskowitz P; Tropsha A J Chem Inf Model; 2005; 45(3):777-85. PubMed ID: 15921467 [TBL] [Abstract][Full Text] [Related]
17. 3D-QSAR comparative molecular field analysis on delta opioid receptor agonist SNC80 and its analogs. Peng Y; Keenan SM; Zhang Q; Welsh WJ J Mol Graph Model; 2005 Sep; 24(1):25-33. PubMed ID: 15950508 [TBL] [Abstract][Full Text] [Related]
18. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. Tang H; Wang XS; Huang XP; Roth BL; Butler KV; Kozikowski AP; Jung M; Tropsha A J Chem Inf Model; 2009 Feb; 49(2):461-76. PubMed ID: 19182860 [TBL] [Abstract][Full Text] [Related]
19. Comparison of MC4PC and MDL-QSAR rodent carcinogenicity predictions and the enhancement of predictive performance by combining QSAR models. Contrera JF; Kruhlak NL; Matthews EJ; Benz RD Regul Toxicol Pharmacol; 2007 Dec; 49(3):172-82. PubMed ID: 17703860 [TBL] [Abstract][Full Text] [Related]
20. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]